Suppr超能文献

用于身体活动识别的智能手机运动传感器融合

Fusion of smartphone motion sensors for physical activity recognition.

作者信息

Shoaib Muhammad, Bosch Stephan, Incel Ozlem Durmaz, Scholten Hans, Havinga Paul J M

机构信息

Pervasive Systems Group, Department of Computer Science, Zilverling Building, PO-Box 217,7500 AE Enschede, The Netherlands.

Department of Computer Engineering, Galatasaray University, Ortakoy, Istanbul 34349, Turkey.

出版信息

Sensors (Basel). 2014 Jun 10;14(6):10146-76. doi: 10.3390/s140610146.

Abstract

For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

摘要

对于身体活动识别,许多研究都在利用智能手机传感器,如加速度计和陀螺仪。到目前为止,特别是加速度计已经得到了广泛研究。在最近的一些研究中,为了提高识别性能,使用了陀螺仪、磁力计(辅助作用)和加速度计(主要作用)的组合。智能手机上可用的各种运动传感器如何以及何时单独或组合使用才能获得更好的识别性能?这还有待探索。为了研究这个问题,在本文中,我们探讨了这些不同的运动传感器在活动识别过程中的不同情况下的表现。为此,我们设计了一个数据收集实验,让10名参与者在不同位置携带智能手机进行7种不同的活动。基于对这个数据集的分析,我们表明,除了磁力计之外,这些传感器根据所识别的活动类型、身体位置、使用的数据特征和所采用的分类方法(个性化或通用化),各自都能够单独发挥主要作用。我们还表明,只有当它们各自的性能不是很高,有性能提升空间时,它们的组合才会提高整体识别性能。我们已经将我们的数据集和数据收集应用程序公开,从而使我们的实验具有可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c00c/4118351/75f36c2bfde6/sensors-14-10146f8.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验