Suppr超能文献

来自甜橙的(+)-柠檬烯合酶的功能与结构表征

Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

作者信息

Morehouse Benjamin R, Kumar Ramasamy P, Matos Jason O, Olsen Sarah Naomi, Entova Sonya, Oprian Daniel D

机构信息

Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States.

出版信息

Biochemistry. 2017 Mar 28;56(12):1706-1715. doi: 10.1021/acs.biochem.7b00143. Epub 2017 Mar 15.

Abstract

Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

摘要

萜类化合物是天然化合物中最大且最多样化的一类,具有重要的商业和医学应用。柠檬烯是一种环状单萜(C),在自然界中以两种对映体(+)和(-)的形式存在,它们由不同的酶产生。(-)-对映体的产生机制已得到详细研究,但要了解这类酶如何实现对映体选择性,同样重要的是要对生成(+)-柠檬烯的酶进行全面的生化描述。在此,我们报告了从脐橙(Citrus sinensis)中首次克隆并对(+)-柠檬烯合酶进行生化特性分析。该酶遵循经典的米氏动力学,且仅产生(+)-对映体。我们已确定脱辅基蛋白处于“开放”构象时2.3 Å分辨率的晶体结构。与代表完全封闭构象的(-)-柠檬烯合酶(留兰香薄荷(Mentha spicata))的结构(蛋白质数据库条目2ONG)进行比较,结果表明,短的H-α1螺旋在底物结合时向内移动近5 Å,并且一个保守的酪氨酸翻转,使其羟基指向活性位点。

相似文献

1
Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.
Biochemistry. 2017 Mar 28;56(12):1706-1715. doi: 10.1021/acs.biochem.7b00143. Epub 2017 Mar 15.
3
Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.
Phytochemistry. 2017 May;137:34-41. doi: 10.1016/j.phytochem.2017.02.017. Epub 2017 Feb 16.
4
Structure of limonene synthase, a simple model for terpenoid cyclase catalysis.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5360-5. doi: 10.1073/pnas.0700915104. Epub 2007 Mar 19.
5
Biotechnological production of limonene in microorganisms.
Appl Microbiol Biotechnol. 2016 Apr;100(7):2927-38. doi: 10.1007/s00253-016-7337-7. Epub 2016 Feb 26.
6
Generation and Functional Evaluation of Designer Monoterpene Synthases.
Methods Enzymol. 2016;576:147-65. doi: 10.1016/bs.mie.2016.03.013. Epub 2016 Mar 28.
7
8
Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3332-7. doi: 10.1073/pnas.1501203112. Epub 2015 Mar 2.
9
Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity.
Arch Biochem Biophys. 2003 Mar 15;411(2):196-203. doi: 10.1016/s0003-9861(02)00711-7.
10
Chemoenzymatic synthesis of the alarm pheromone (+)-verbenone from geranyl diphosphate.
Chem Commun (Camb). 2012 Jul 18;48(56):7040-2. doi: 10.1039/c2cc32883f. Epub 2012 Jun 11.

引用本文的文献

1
Integrated platform for structural and functional analysis of terpene synthases of .
PeerJ. 2025 Jul 10;13:e19723. doi: 10.7717/peerj.19723. eCollection 2025.
3
Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction.
Biochemistry. 2024 Nov 5;63(21):2904-2915. doi: 10.1021/acs.biochem.4c00547. Epub 2024 Oct 14.
4
Mining methods and typical structural mechanisms of terpene cyclases.
Bioresour Bioprocess. 2021 Jul 28;8(1):66. doi: 10.1186/s40643-021-00421-2.
5
Chemical and genetic basis of orange flavor.
Sci Adv. 2024 Mar;10(9):eadk2051. doi: 10.1126/sciadv.adk2051. Epub 2024 Feb 28.
6
Decoding Catalysis by Terpene Synthases.
ACS Catal. 2023 Sep 15;13(19):12774-12802. doi: 10.1021/acscatal.3c03047. eCollection 2023 Oct 6.
7
Identification of (-)-bornyl diphosphate synthase from and its application for (-)-borneol biosynthesis in .
Synth Syst Biotechnol. 2021 Dec 11;7(1):490-497. doi: 10.1016/j.synbio.2021.12.004. eCollection 2022 Mar.
8
Engineering Rhodosporidium toruloides for limonene production.
Biotechnol Biofuels. 2021 Dec 22;14(1):243. doi: 10.1186/s13068-021-02094-7.
9
Predictive Engineering of Class I Terpene Synthases Using Experimental and Computational Approaches.
Chembiochem. 2022 Mar 4;23(5):e202100484. doi: 10.1002/cbic.202100484. Epub 2021 Nov 3.

本文引用的文献

3
The draft genome of sweet orange (Citrus sinensis).
Nat Genet. 2013 Jan;45(1):59-66. doi: 10.1038/ng.2472. Epub 2012 Nov 25.
4
Terpenoid synthase structures: a so far incomplete view of complex catalysis.
Nat Prod Rep. 2012 Oct;29(10):1153-75. doi: 10.1039/c2np20059g. Epub 2012 Aug 21.
5
Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.
6
Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.
Pure Appl Chem. 2010;82(8):1585-1597. doi: 10.1351/PAC-CON-09-09-37.
8
iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):271-81. doi: 10.1107/S0907444910048675. Epub 2011 Mar 18.
9
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
10
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验