Wiepert Daniela A, Lowe Val J, Knopman David S, Boeve Bradley F, Graff-Radford Jonathan, Petersen Ronald C, Jack Clifford R, Jones David T
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Alzheimers Dement (Amst). 2017 Jan 25;6:152-161. doi: 10.1016/j.dadm.2017.01.004. eCollection 2017.
Biomarkers for Alzheimer's disease (AD) pathophysiology have been developed that focus on various levels of brain organization. However, no robust biomarker of large-scale network failure has been developed. Using the recently introduced cascading network failure model of AD, we developed the network failure quotient (NFQ) as a biomarker of this process.
We developed and optimized the NFQ using our recently published analyses of task-free functional magnetic resonance imaging data in clinically normal (n = 43) and AD dementia participants (n = 28) from the Alzheimer's Disease Neuroimaging Initiative. The optimized NFQ (oNFQ) was then validated in a cohort spanning the AD spectrum from the Mayo Clinic (n = 218).
The oNFQ ( = 1.25, 95% confidence interval [1.25, 1.26]) had the highest effect size for differentiating persons with AD dementia from clinically normal participants. The oNFQ measure performed similarly well on the validation Mayo Clinic sample ( = 1.44, 95% confidence interval [1.43, 1.44]). The oNFQ was also associated with other available key biomarkers in the Mayo cohort.
This study demonstrates a measure of functional connectivity, based on a cascading network failure model of AD, and was highly successful in identifying AD dementia. A robust biomarker of the large-scale effects of AD pathophysiology will allow for richer descriptions of the disease process and its modifiers, but is not currently suitable for discriminating clinical diagnostic categories. The large-scale network level may be one of the earliest manifestations of AD, making this an attractive target for continued biomarker development to be used in prevention trials.
针对阿尔茨海默病(AD)病理生理学的生物标志物已被开发出来,这些标志物聚焦于大脑组织的各个层面。然而,尚未开发出用于衡量大规模网络功能障碍的可靠生物标志物。利用最近引入的AD级联网络功能障碍模型,我们开发了网络功能障碍商数(NFQ)作为这一过程的生物标志物。
我们利用最近发表的对来自阿尔茨海默病神经影像倡议组织的临床正常参与者(n = 43)和AD痴呆参与者(n = 28)的静息态功能磁共振成像数据的分析,开发并优化了NFQ。然后,在梅奥诊所的一个涵盖AD谱系的队列(n = 218)中对优化后的NFQ(oNFQ)进行了验证。
oNFQ(= 1.25,95%置信区间[1.25, 1.26])在区分AD痴呆患者和临床正常参与者方面具有最大的效应量。oNFQ指标在梅奥诊所验证样本上的表现同样出色(= 1.44,95%置信区间[1.43, 1.44])。oNFQ还与梅奥队列中的其他可用关键生物标志物相关。
本研究展示了一种基于AD级联网络功能障碍模型的功能连接测量方法,在识别AD痴呆方面非常成功。AD病理生理学大规模效应的可靠生物标志物将有助于更全面地描述疾病过程及其调节因素,但目前尚不适用于区分临床诊断类别。大规模网络层面可能是AD最早的表现之一,这使得它成为持续生物标志物开发的一个有吸引力的目标,可用于预防试验。