Weber Heike E, Gottardi Manuela, Brückner Christine, Oreb Mislav, Boles Eckhard, Tripp Joanna
Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany.
Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
Appl Environ Microbiol. 2017 May 1;83(10). doi: 10.1128/AEM.03472-16. Print 2017 May 15.
Biotechnological production of ,-muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for ,-muconic acid has already been established in the host organism , the generation of industrially relevant amounts of ,-muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C (AroY-C), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C in strongly depends on the strain background. We could demonstrate that the strain dependency is caused by the presence or absence of an intact genomic copy of , which encodes a mitochondrial enzyme responsible for the biosynthesis of a prenylated form of the cofactor flavin mononucleotide (prFMN). The inactivity of AroY-C in strain CEN.PK2-1 could be overcome by plasmid-borne expression of Pad1 or its bacterial homologue AroY subunit B (AroY-B). Our data reveal that the two enzymes perform the same function in decarboxylation of PCA by AroY-C, although coexpression of Pad1 led to higher decarboxylase activity. Conversely, AroY-B can replace Pad1 in its function in decarboxylation of phenylacrylic acids by ferulic acid decarboxylase Fdc1. Targeting of the majority of AroY-B to mitochondria by fusion to a heterologous mitochondrial targeting signal did not improve decarboxylase activity of AroY-C, suggesting that mitochondrial localization has no major impact on cofactor biosynthesis. In , the decarboxylation of protocatechuic acid (PCA) to catechol is the bottleneck reaction in the heterologous biosynthetic pathway for production of ,-muconic acid, a valuable precursor for the production of bulk chemicals. In our work, we demonstrate the importance of the strain background for the activity of a bacterial PCA decarboxylase in Inactivity of the decarboxylase is due to a nonsense mutation in a gene encoding a mitochondrial enzyme involved in the biosynthesis of a cofactor required for decarboxylase function. Our study reveals functional interchangeability of Pad1 and a bacterial homologue, irrespective of their intracellular localization. Our results open up new possibilities to improve muconic acid production by engineering cofactor supply. Furthermore, the results have important implications for the choice of the production strain.
利用可再生原料通过生物技术生产衣康酸是一种环境可持续的替代传统石油基方法的途径。尽管衣康酸的异源生产途径已在宿主生物体中建立,但由于细菌原儿茶酸(PCA)脱羧酶AroY异构体亚基C(AroY-C)活性较低,阻碍了工业相关量衣康酸的生成,导致大量中间产物PCA分泌到培养基中。在本研究中,我们表明AroY-C在 中的活性强烈依赖于菌株背景。我们能够证明菌株依赖性是由 完整基因组拷贝的存在与否引起的, 编码一种线粒体酶,负责辅酶黄素单核苷酸(prFMN)的异戊烯化形式的生物合成。通过质粒携带Pad1或其细菌同源物AroY亚基B(AroY-B)的表达,可以克服CEN.PK2-1菌株中AroY-C的无活性。我们的数据表明,尽管Pad1的共表达导致更高的脱羧酶活性,但这两种酶在AroY-C催化PCA脱羧反应中发挥相同的功能。相反,AroY-B可以在阿魏酸脱羧酶Fdc1催化苯丙烯酸脱羧反应中替代Pad1发挥其功能。通过与异源线粒体靶向信号融合将大部分AroY-B靶向线粒体并不能提高AroY-C的脱羧酶活性,这表明线粒体定位对辅因子生物合成没有重大影响。在 中,原儿茶酸(PCA)脱羧生成儿茶酚是衣康酸异源生物合成途径中的瓶颈反应,衣康酸是大宗化学品生产的有价值前体。在我们的工作中,我们证明了菌株背景对细菌PCA脱羧酶在 中的活性的重要性。脱羧酶的无活性是由于编码参与脱羧酶功能所需辅因子生物合成的线粒体酶的基因中的无义突变。我们的研究揭示了Pad1与其细菌同源物的功能互换性,无论它们的细胞内定位如何。我们的结果为通过工程化辅因子供应提高衣康酸产量开辟了新的可能性。此外,这些结果对生产菌株的选择具有重要意义。