Suppr超能文献

功能性黄素单核苷酸异戊烯基转移酶对酿酒酵母中异源粘康酸途径中细菌脱羧酶活性的需求。

Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

作者信息

Weber Heike E, Gottardi Manuela, Brückner Christine, Oreb Mislav, Boles Eckhard, Tripp Joanna

机构信息

Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany.

Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany

出版信息

Appl Environ Microbiol. 2017 May 1;83(10). doi: 10.1128/AEM.03472-16. Print 2017 May 15.

Abstract

Biotechnological production of ,-muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for ,-muconic acid has already been established in the host organism , the generation of industrially relevant amounts of ,-muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C (AroY-C), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C in strongly depends on the strain background. We could demonstrate that the strain dependency is caused by the presence or absence of an intact genomic copy of , which encodes a mitochondrial enzyme responsible for the biosynthesis of a prenylated form of the cofactor flavin mononucleotide (prFMN). The inactivity of AroY-C in strain CEN.PK2-1 could be overcome by plasmid-borne expression of Pad1 or its bacterial homologue AroY subunit B (AroY-B). Our data reveal that the two enzymes perform the same function in decarboxylation of PCA by AroY-C, although coexpression of Pad1 led to higher decarboxylase activity. Conversely, AroY-B can replace Pad1 in its function in decarboxylation of phenylacrylic acids by ferulic acid decarboxylase Fdc1. Targeting of the majority of AroY-B to mitochondria by fusion to a heterologous mitochondrial targeting signal did not improve decarboxylase activity of AroY-C, suggesting that mitochondrial localization has no major impact on cofactor biosynthesis. In , the decarboxylation of protocatechuic acid (PCA) to catechol is the bottleneck reaction in the heterologous biosynthetic pathway for production of ,-muconic acid, a valuable precursor for the production of bulk chemicals. In our work, we demonstrate the importance of the strain background for the activity of a bacterial PCA decarboxylase in Inactivity of the decarboxylase is due to a nonsense mutation in a gene encoding a mitochondrial enzyme involved in the biosynthesis of a cofactor required for decarboxylase function. Our study reveals functional interchangeability of Pad1 and a bacterial homologue, irrespective of their intracellular localization. Our results open up new possibilities to improve muconic acid production by engineering cofactor supply. Furthermore, the results have important implications for the choice of the production strain.

摘要

利用可再生原料通过生物技术生产衣康酸是一种环境可持续的替代传统石油基方法的途径。尽管衣康酸的异源生产途径已在宿主生物体中建立,但由于细菌原儿茶酸(PCA)脱羧酶AroY异构体亚基C(AroY-C)活性较低,阻碍了工业相关量衣康酸的生成,导致大量中间产物PCA分泌到培养基中。在本研究中,我们表明AroY-C在 中的活性强烈依赖于菌株背景。我们能够证明菌株依赖性是由 完整基因组拷贝的存在与否引起的, 编码一种线粒体酶,负责辅酶黄素单核苷酸(prFMN)的异戊烯化形式的生物合成。通过质粒携带Pad1或其细菌同源物AroY亚基B(AroY-B)的表达,可以克服CEN.PK2-1菌株中AroY-C的无活性。我们的数据表明,尽管Pad1的共表达导致更高的脱羧酶活性,但这两种酶在AroY-C催化PCA脱羧反应中发挥相同的功能。相反,AroY-B可以在阿魏酸脱羧酶Fdc1催化苯丙烯酸脱羧反应中替代Pad1发挥其功能。通过与异源线粒体靶向信号融合将大部分AroY-B靶向线粒体并不能提高AroY-C的脱羧酶活性,这表明线粒体定位对辅因子生物合成没有重大影响。在 中,原儿茶酸(PCA)脱羧生成儿茶酚是衣康酸异源生物合成途径中的瓶颈反应,衣康酸是大宗化学品生产的有价值前体。在我们的工作中,我们证明了菌株背景对细菌PCA脱羧酶在 中的活性的重要性。脱羧酶的无活性是由于编码参与脱羧酶功能所需辅因子生物合成的线粒体酶的基因中的无义突变。我们的研究揭示了Pad1与其细菌同源物的功能互换性,无论它们的细胞内定位如何。我们的结果为通过工程化辅因子供应提高衣康酸产量开辟了新的可能性。此外,这些结果对生产菌株的选择具有重要意义。

相似文献

2
An Engineered Aro1 Protein Degradation Approach for Increased -Muconic Acid Biosynthesis in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.01095-18. Print 2018 Sep 1.
8
PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.
J Biosci Bioeng. 2010 Jun;109(6):564-9. doi: 10.1016/j.jbiosc.2009.11.011. Epub 2009 Dec 16.
9

引用本文的文献

1
Recent advances of muconic acid production using microbial synthetic biology.
Arch Microbiol. 2025 Aug 11;207(9):221. doi: 10.1007/s00203-025-04419-8.
3
An integrated yeast-based process for cis,cis-muconic acid production.
Biotechnol Bioeng. 2022 Feb;119(2):376-387. doi: 10.1002/bit.27992. Epub 2021 Nov 24.
5
Heterologous Metabolic Pathways: Strategies for Optimal Expression in Eukaryotic Hosts.
Acta Naturae. 2020 Apr-Jun;12(2):28-39. doi: 10.32607/actanaturae.10966.
6
Improvement of ,-Muconic Acid Production in through Biosensor-Aided Genome Engineering.
ACS Synth Biol. 2020 Mar 20;9(3):634-646. doi: 10.1021/acssynbio.9b00477. Epub 2020 Feb 14.
8
An Engineered Aro1 Protein Degradation Approach for Increased -Muconic Acid Biosynthesis in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.01095-18. Print 2018 Sep 1.
9
Regioselective para-Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase.
Angew Chem Int Ed Engl. 2017 Oct 23;56(44):13893-13897. doi: 10.1002/anie.201708091. Epub 2017 Oct 2.

本文引用的文献

1
Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity.
Metab Eng Commun. 2016 Apr 22;3:111-119. doi: 10.1016/j.meteno.2016.04.002. eCollection 2016 Dec.
3
Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast.
Nat Chem Biol. 2016 Nov;12(11):951-958. doi: 10.1038/nchembio.2177. Epub 2016 Sep 19.
4
Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.
Cell. 2016 Sep 8;166(6):1397-1410.e16. doi: 10.1016/j.cell.2016.08.020.
5
Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas.
Cell Syst. 2015 Jul 29;1(1):88-96. doi: 10.1016/j.cels.2015.02.001. Epub 2015 Mar 12.
6
Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar.
Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2368-73. doi: 10.1002/anie.201509653. Epub 2016 Jan 14.
7
Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.
Microb Cell Fact. 2015 Sep 15;14:134. doi: 10.1186/s12934-015-0319-0.
8
Engineering Escherichia coli coculture systems for the production of biochemical products.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8266-71. doi: 10.1073/pnas.1506781112. Epub 2015 Jun 25.
9
New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition.
Nature. 2015 Jun 25;522(7557):497-501. doi: 10.1038/nature14560. Epub 2015 Jun 17.
10
UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis.
Nature. 2015 Jun 25;522(7557):502-6. doi: 10.1038/nature14559. Epub 2015 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验