Suppr超能文献

工程化 Aro1 蛋白降解方法提高酿酒酵母中 - 黏康酸生物合成。

An Engineered Aro1 Protein Degradation Approach for Increased -Muconic Acid Biosynthesis in Saccharomyces cerevisiae.

机构信息

Department of Biology, Concordia University, Montréal, Québec, Canada.

Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada.

出版信息

Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.01095-18. Print 2018 Sep 1.

Abstract

Muconic acid (MA) is a chemical building block and precursor to adipic and terephthalic acids used in the production of nylon and polyethylene terephthalate polymer families. Global demand for these important materials, coupled to their dependence on petrochemical resources, provides substantial motivation for the microbial synthesis of MA and its derivatives. In this context, the yeast shikimate pathway can be sourced as a precursor for the formation of MA. Here we report a novel strategy to balance MA pathway performance with aromatic amino acid prototrophy by destabilizing Aro1 through C-terminal degron tagging. Coupling of a composite MA production pathway to degron-tagged Aro1 in an Δ Δ mutant background led to the accumulation of 5.6 g/liter protocatechuic acid (PCA). However, metabolites downstream of PCA were not detected, despite the inclusion of genes mediating their biosynthesis. Because CEN.PK family strains of lack the activity of Pad1, a key enzyme supporting PCA decarboxylase activity, chromosomal expression of intact alleviated this bottleneck, resulting in nearly stoichiometric conversion (95%) of PCA to downstream products. In a fed-batch bioreactor, the resulting strain produced 1.2 g/liter MA under prototrophic conditions and 5.1 g/liter MA when supplemented with amino acids, corresponding to a yield of 58 mg/g sugar. Previous efforts to engineer a heterologous MA pathway in have been hindered by a bottleneck at the PCA decarboxylation step and the creation of aromatic amino acid auxotrophy through deleterious manipulation of the pentafunctional Aro1 protein. In light of these studies, this work was undertaken with the central objective of preserving amino acid prototrophy, which we achieved by employing an Aro1 degradation strategy. Moreover, resolution of the key PCA decarboxylase bottleneck, as detailed herein, advances our understanding of yeast MA biosynthesis and will guide future strain engineering efforts. These strategies resulted in the highest titer reported to date for muconic acid produced in yeast. Overall, our study showcases the effectiveness of careful tuning of yeast Aro1 activity and the importance of host-pathway dynamics.

摘要

黏康酸(MA)是一种化学结构单元,是生产尼龙和聚对苯二甲酸乙二酯聚合物家族所必需的己二酸和对苯二甲酸的前体。这些重要材料的全球需求,加上它们对石化资源的依赖,为 MA 及其衍生物的微生物合成提供了巨大的动力。在这种情况下,酵母莽草酸途径可以作为 MA 形成的前体。在这里,我们报告了一种通过 C 端降解结构域标记来破坏 Aro1 从而平衡 MA 途径性能和芳香族氨基酸原养型的新策略。在ΔΔ突变体背景下,将复合 MA 生产途径与带有降解结构域标记的 Aro1 偶联,导致 5.6 g/L 原儿茶酸(PCA)的积累。然而,尽管包括了介导其生物合成的基因,但 PCA 下游的代谢物并未被检测到。由于缺乏支持 PCA 脱羧酶活性的关键酶 Pad1,CEN.PK 家族的菌株缺乏活性,因此染色体上完整的表达缓解了这一瓶颈,导致 PCA 几乎以化学计量的转化率(95%)转化为下游产物。在分批补料生物反应器中,在原养型条件下,该菌株生产 1.2 g/L 的 MA,当补充氨基酸时,生产 5.1 g/L 的 MA,对应的糖产率为 58 mg/g。以前在酵母中构建异源 MA 途径的努力受到 PCA 脱羧步骤的瓶颈和通过对多功能 Aro1 蛋白的有害操作产生芳香族氨基酸营养缺陷型的阻碍。有鉴于此,这项工作的中心目标是保持氨基酸原养型,我们通过采用 Aro1 降解策略来实现这一目标。此外,正如本文所详述的那样,解决关键的 PCA 脱羧酶瓶颈问题,推进了我们对酵母 MA 生物合成的理解,并将指导未来的菌株工程努力。这些策略使我们获得了迄今为止在酵母中生产 MA 的最高浓度。总的来说,我们的研究展示了仔细调整酵母 Aro1 活性的有效性,以及宿主-途径动态的重要性。

相似文献

引用本文的文献

本文引用的文献

3
Biosynthesis and Activity of Prenylated FMN Cofactors.类异戊二烯 FMN 辅因子的生物合成与活性。
Cell Chem Biol. 2018 May 17;25(5):560-570.e6. doi: 10.1016/j.chembiol.2018.02.007. Epub 2018 Mar 15.
6
Kinetic Characterization of Prenyl-Flavin Synthase from Saccharomyces cerevisiae.酿酒酵母异戊烯基黄素合酶的动力学特性
Biochemistry. 2018 Feb 6;57(5):696-700. doi: 10.1021/acs.biochem.7b01131. Epub 2017 Dec 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验