Cabezón Itsaso, Augé Elisabet, Bosch Manel, Beckett Alison J, Prior Ian A, Pelegrí Carme, Vilaplana Jordi
Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.
Histochem Cell Biol. 2017 Jul;148(1):3-12. doi: 10.1007/s00418-017-1553-9. Epub 2017 Mar 10.
Due to the physical and physiological properties of the blood-brain barrier (BBB), the transport of neurotherapeutics from blood to brain is still a pharmaceutical challenge. We previously conducted a series of experiments to explore the potential of the anti-transferrin receptor 8D3 monoclonal antibody (mAb) to transport neurotherapeutics across the BBB. In that study, gold nanoparticles (AuNPs) were coated with the 8D3 antibody and administered intravenously to mice. Transmission electron microscopy was used and a two-dimensional (2D) image analysis was performed to detect the AuNPs in the brain capillary endothelial cells (BCECs) and brain parenchyma. In the present work, we determined that serial block-face scanning electron microscopy (SBF-SEM) is a useful tool to study the transcytosis of these AuNPs across the BBB in three dimensions and we, therefore, applied it to gain more knowledge of their transcellular trafficking. The resulting 3D reconstructions provided additional information on the endocytic vesicles containing AuNPs and the endosomal processing that occurs inside BCECs. The passage from 2D to 3D analysis reinforced the trafficking model proposed in the 2D study, and revealed that the vesicles containing AuNPs are significantly larger and more complex than described in our 2D study. We also discuss tradeoffs of using this technique for our application, and conclude that together with other volume electron microscopy imaging techniques, SBF-SEM is a powerful approach that is worth of considering for studies of drug transport across the BBB.
由于血脑屏障(BBB)的物理和生理特性,神经治疗药物从血液到大脑的转运仍然是一个药学挑战。我们之前进行了一系列实验,以探索抗转铁蛋白受体8D3单克隆抗体(mAb)转运神经治疗药物穿过血脑屏障的潜力。在该研究中,金纳米颗粒(AuNPs)用8D3抗体包被并静脉注射给小鼠。使用透射电子显微镜并进行二维(2D)图像分析,以检测脑毛细血管内皮细胞(BCECs)和脑实质中的AuNPs。在本研究中,我们确定连续块面扫描电子显微镜(SBF-SEM)是一种有用的工具,可用于三维研究这些AuNPs穿过血脑屏障的转胞吞作用,因此我们应用它来进一步了解它们的跨细胞运输。所得的三维重建提供了关于含有AuNPs的内吞小泡以及BCECs内部发生的内体加工的额外信息。从二维分析到三维分析的转变强化了二维研究中提出的运输模型,并揭示了含有AuNPs的小泡比我们二维研究中描述的要大得多且更复杂。我们还讨论了将该技术用于我们的应用时的权衡,并得出结论,与其他体电子显微镜成像技术一起,SBF-SEM是一种强大的方法,值得在研究药物穿过血脑屏障的运输时考虑。