Levite Mia, Marino Franca, Cosentino Marco
School of Pharmacy, Faculty of Medicine, The Hebrew University, Ein Karem, 12065, Jerusalem, Israel.
Institute of Gene Therapy, Hadassah University Hospital, Ein Karem, 91120, Jerusalem, Israel.
J Neural Transm (Vienna). 2017 May;124(5):525-542. doi: 10.1007/s00702-016-1640-4. Epub 2017 Mar 10.
Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in EAE-afflicted animals. In a single clinical trial, MS patients did not benefit from bromocriptine, which is a D2-like DR agonist. Nevertheless, multiple evidence showing dopaminergic abnormalities in T cells in MS encourages testing other DR analogues/drugs in MS, possibly as "add-on" to IFN-β or other MS-immunomodulating therapies. Together, abnormalities in DRs in T cells can contribute to MS, and DRs in T cells can be therapeutic targets in MS. Finally and in a more general scope: the direct effects of all dopaminergic drugs on human T cells should be studied in further depth, and also taken into consideration whenever treating patients with any disease, to avoid detrimental side effects on the immune system of the patients.
多巴胺是一种关键的神经递质,它通过5种多巴胺受体(DRs),即D1R - D5R,在神经系统和许多外周器官中引发关键作用。多巴胺还对许多表达DR的免疫细胞,主要是T细胞和树突状细胞,产生许多直接且非常强效的影响。在本综述中,我们仅关注多巴胺受体、其在T细胞中的作用及产生情况。多巴胺自身(在约0.1 nM的最佳浓度下)可诱导静息正常人T细胞的多种功能,其中包括:T细胞黏附、趋化迁移、归巢、细胞因子分泌等。有趣的是,多巴胺可激活静息效应T细胞(Teffs),但抑制调节性T细胞(Tregs),且这两种效应最终都会导致Teff激活。多巴胺对T细胞的影响是动态的、依赖环境的,并由以下因素决定:T细胞激活状态、T细胞类型、DR类型和多巴胺浓度。多巴胺本身以及一些临床上用于心脏、神经和其他非免疫适应症的多巴胺能分子/药物,对人类T细胞有直接影响(本综述对此进行了总结)。这些多巴胺能药物包括:多巴胺(商品名:Intropin)、左旋多巴、溴隐亭、普拉克索、培高利特、氟哌啶醇、匹莫齐特和金刚烷胺。其他多巴胺能药物尚未测试其对T细胞的直接作用。多发性硬化症(MS)和实验性自身免疫性脑脊髓炎(EAE)的大量证据表明,这些疾病中T细胞存在多巴胺能调节异常:MS患者的Teffs中D1样DRs减少,多巴胺对这些细胞无影响。相反,MS患者的Tregs中D1样DRs增加,这可能导致MS中Treg功能受损。用干扰素β(IFN-β)治疗MS患者可增加Teffs中的D1样DRs并减少D2样DRs,减少Tregs中的D1样DRs,最重要的是:恢复患者Teffs对多巴胺的反应性。DR激动剂和拮抗剂在患有EAE的动物中具有一定益处。在一项单一临床试验中,MS患者未从作为D2样DR激动剂的溴隐亭中获益。然而,多项证据表明MS中T细胞存在多巴胺能异常,这鼓励在MS中测试其他DR类似物/药物,可能作为IFN-β或其他MS免疫调节疗法的“附加”治疗。总之,T细胞中DRs的异常可能导致MS,T细胞中的DRs可成为MS的治疗靶点。最后且更广泛地说:所有多巴胺能药物对人类T细胞的直接作用应进一步深入研究,并且在治疗任何疾病的患者时都应予以考虑,以避免对患者免疫系统产生有害的副作用。