The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan, 611731, China.
School of Chemistry and Environment, Beihang University, Beijing 100191, China.
Biosens Bioelectron. 2017 Aug 15;94:227-234. doi: 10.1016/j.bios.2017.03.006. Epub 2017 Mar 8.
Coupling the light-harvesting capabilities of semiconductors with the catalytic power of bacteria is a promising way to increase the efficiency of bioelectrochemical systems. Here, we reported the enhanced photocurrents produced by the synergy of hematite nanowire-arrayed photoanode and the bio-engineered Shewanella oneidensis MR-1 in a solar-assisted microbial photoelectrochemical system (solar MPS) under the visible light. To increase the supply of bioelectrons, the D-lactate transporter, SO1522, was overexpressed in the recombinant S. oneidensis (T-SO1522) that could digest D-lactate 61% faster than the wild-type S. oneidenesis. Without light illumination, the addition of either the wild-type or the recombinant S. oneidensis to the system did not induce any obvious increase in the current output. However, under one-sun illumination, the photocurrent of the abiotic control was 16±2 μA cm at 0.8V vs. Ag/AgCl, and the addition of the wild-type S. oneidensis and the recombinant S. oneidensis increased the photocurrent to 70±6 and 95±8 μA cm, respectively, at 0.8V vs. Ag/AgCl. Moreover, the solar MPS with T-SO1522 presented quick and repeatable responses to the on/off illumination cycles, and had relatively stable photocurrent generation in the 273-h operation. Scanning electron microscope (SEM) images showed that the cell density on the hematite photoelectrode was similar between the recombinant and the wild-type S. oneidensis. These findings revealed the pronounced influence of metabolic rates on the light-to-electricity conversion in the complex photocatalyst-electricigen hybrid system, which is important to promote the development of the solar MPS for electricity production and wastewater treatment.
将半导体的光捕获能力与细菌的催化能力相结合,是提高生物电化学系统效率的一种很有前途的方法。在这里,我们报道了在太阳能辅助微生物光电化学系统(太阳能 MPS)中,赤铁矿纳米线排列的光阳极与经过生物工程改造的希瓦氏菌属 oneidensis MR-1 的协同作用产生的增强光电流,该系统在可见光下工作。为了增加生物电子的供应,在重组的希瓦氏菌属 oneidensis(T-SO1522)中过表达了 D-乳酸转运蛋白 SO1522,它可以比野生型希瓦氏菌属 oneidensis 更快地消化 D-乳酸 61%。在没有光照的情况下,向系统中添加野生型或重组希瓦氏菌属 oneidensis 都不会引起电流输出的明显增加。然而,在单阳光照下,非生物对照的光电流在 0.8V 对 Ag/AgCl 时为 16±2 μA cm,添加野生型希瓦氏菌属 oneidensis 和重组希瓦氏菌属 oneidensis 分别将光电流提高到 70±6 和 95±8 μA cm。此外,具有 T-SO1522 的太阳能 MPS 对开/关光照循环具有快速且可重复的响应,并且在 273 小时的运行中具有相对稳定的光电流产生。扫描电子显微镜(SEM)图像显示,重组和野生型希瓦氏菌属 oneidensis 在赤铁矿光电极上的细胞密度相似。这些发现揭示了代谢率对复杂光催化剂-电生菌混合系统中光电转换的显著影响,这对于促进太阳能 MPS 的发展以用于发电和废水处理非常重要。