Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories , Livermore, California 94550, United States.
Nano Lett. 2014 Jun 11;14(6):3688-93. doi: 10.1021/nl501664n. Epub 2014 Jun 2.
Here we report the investigation of interplay between light, a hematite nanowire-arrayed photoelectrode, and Shewanella oneidensis MR-1 in a solar-assisted microbial photoelectrochemical system (solar MPS). Whole cell electrochemistry and microbial fuel cell (MFC) characterization of Shewanella oneidensis strain MR-1 showed that these cells cultured under (semi)anaerobic conditions expressed substantial c-type cytochrome outer membrane proteins, exhibited well-defined redox peaks, and generated bioelectricity in a MFC device. Cyclic voltammogram studies of hematite nanowire electrodes revealed active electron transfer at the hematite/cell interface. Notably, under a positive bias and light illumination, the hematite electrode immersed in a live cell culture was able to produce 150% more photocurrent than that in the abiotic control of medium or dead culture, suggesting a photoenhanced electrochemical interaction between hematite and Shewanella. The enhanced photocurrent was attributed to the additional redox species associated with MR-1 cells that are more thermodynamically favorable to be oxidized than water. Long-term operation of the hematite solar MPS with light on/off cycles showed stable current generation up to 2 weeks. Fluorescent optical microscope and scanning electron microscope imaging revealed that the top of the hematite nanowire arrays were covered by a biofilm, and iron determination colorimetric assay revealed 11% iron loss after a 10-day operation. To our knowledge, this is the first report on interfacing a photoanode directly with electricigens in a MFC system. Such a system could open up new possibilities in solar-microbial device that can harvest solar energy and recycle biomass simultaneously to treat wastewater, produce electricity, and chemical fuels in a self-sustained manner.
在这里,我们报告了在太阳能辅助微生物光电化学系统(太阳能 MPS)中,光、赤铁矿纳米线阵列光电极和希瓦氏菌属 oneidensis MR-1 之间相互作用的研究。希瓦氏菌属 oneidensis MR-1 的全细胞电化学和微生物燃料电池(MFC)特性表明,在(半)厌氧条件下培养的这些细胞表达了大量 c 型细胞色素外膜蛋白,表现出明确的氧化还原峰,并在 MFC 装置中产生生物电能。赤铁矿纳米线电极的循环伏安研究表明,在赤铁矿/细胞界面上存在有效的电子转移。值得注意的是,在正偏压和光照下,浸入活细胞培养物中的赤铁矿电极比在无生命介质或死培养物的生物对照中产生的光电流多 150%,这表明赤铁矿和希瓦氏菌之间存在光增强的电化学相互作用。增强的光电流归因于与 MR-1 细胞相关的额外氧化还原物种,这些物种比水更有利于被氧化,热力学上更有利。在有光/无光循环的赤铁矿太阳能 MPS 长期运行中,稳定的电流产生可长达 2 周。荧光光学显微镜和扫描电子显微镜成像显示,赤铁矿纳米线阵列的顶部被生物膜覆盖,并且在 10 天的运行后,铁测定比色法显示出 11%的铁损失。据我们所知,这是首次将光电阳极直接与 MFC 系统中的电生菌接口的报告。这种系统可以在太阳能微生物装置中开辟新的可能性,这些装置可以同时利用太阳能和生物量来回收,以自我维持的方式处理废水、发电和化学燃料。