AO Research Institute Davos, Clavadelerstrasse 8, CH 7270 Davos, Switzerland.
MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Acta Biomater. 2017 May;54:386-398. doi: 10.1016/j.actbio.2017.03.006. Epub 2017 Mar 7.
Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated biodegradable composite scaffolds using SLA and endowed them with osteopromotive properties in the absence of biologics. First we prepared photo-crosslinkable poly(trimethylene carbonate) (PTMC) resins containing 20 and 40wt% of hydroxyapatite (HA) nanoparticles and fabricated scaffolds with controlled macro-architecture. Then, we conducted experiments to investigate how the incorporation of HA in photo-crosslinked PTMC matrices improved human bone marrow stem cells osteogenic differentiation in vitro and kinetic of bone healing in vivo. We observed that bone regeneration was significantly improved using composite scaffolds containing as low as 20wt% of HA, along with difference in terms of osteogenesis and degree of implant osseointegration. Further investigations revealed that SLA process was responsible for the formation of a rich microscale layer of HA corralling scaffolds. To summarize, this work is of substantial importance as it shows how the fabrication of hierarchical biomaterials via surface-enrichment of functional HA nanoparticles in composite polymer stereolithographic structures could impact in vitro and in vivo osteogenesis.
This study reports for the first time the enhance osteopromotion of composite biomaterials, with controlled macro-architecture and microscale distribution of hydroxyapatite particles, manufactured by stereolithography. In this process, the hydroxyapatite particles are not only embedded into an erodible polymer matrix, as reported so far in the literature, but concentrated at the surface of the structures. This leads to robust in vivo bone formation at low concentration of hydroxyapatite. The reported 3D self-corralling composite architecture provides significant opportunities to develop functional biomaterials for bone repair and tissue engineering.
使用立体光固化(SLA)制造用于骨组织工程的复合材料支架显示出巨大的前景。然而,为了引发有效的骨形成和植入物整合,通常将外源性生长因子与支架材料结合使用。在这项研究中,我们使用 SLA 制造了可生物降解的复合材料支架,并赋予了它们在没有生物制剂的情况下具有成骨作用的特性。首先,我们制备了含有 20wt%和 40wt%羟基磷灰石(HA)纳米颗粒的可光交联聚三亚甲基碳酸酯(PTMC)树脂,并制造了具有可控宏观结构的支架。然后,我们进行了实验,以研究 HA 在光交联 PTMC 基质中的掺入如何改善体外人骨髓间充质干细胞成骨分化和体内骨愈合动力学。我们观察到,使用含有低至 20wt%HA 的复合支架可显著改善骨再生,并且在成骨和植入物骨整合程度方面存在差异。进一步的研究表明,SLA 工艺负责形成富含 HA 的丰富微观层,使支架聚集。总之,这项工作非常重要,因为它表明了通过在复合聚合物立体光刻结构中表面富集功能性 HA 纳米颗粒来制造分级生物材料如何影响体外和体内成骨。
本研究首次报道了通过立体光刻制造具有可控宏观结构和微观分布羟基磷灰石颗粒的复合材料的增强成骨作用。在该过程中,羟基磷灰石颗粒不仅嵌入到可侵蚀的聚合物基质中,如迄今为止文献中报道的那样,而且集中在结构的表面。这导致在低浓度羟基磷灰石下也能产生坚固的体内骨形成。所报道的 3D 自聚集复合结构为开发用于骨修复和组织工程的功能性生物材料提供了重要机会。