Enbergs Simon, Spinnen Jacob, Dehne Tilo, Sittinger Michael
Tissue Engineering Laboratory, BIH Center of Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany.
J Tissue Eng Regen Med. 2023 Apr 8;2023:3901448. doi: 10.1155/2023/3901448. eCollection 2023.
Treatment options for critically sized bone defects are currently limited to metal osteosynthesis, autologous bone grafting, or calcium-based implants to bridge the gap. Additive manufacturing techniques pose a possible alternative. The light-basedthree-dimensional printing process of vat photopolymerization (VP) is of particular interest since it enables the printing of complex scaffold architectures at high resolution. This review compares multiple vat photopolymerization processes as well as the employed resin components' interactions with musculoskeletal cells and tissue. The results show an outstanding printing capability, exceeding the potential of other printing methods. However, despite the availability of various biocompatible materials, neither the mechanical strength of bone nor the scale necessary for clinical application has been achieved so far when relying on single material constructs. One possible solution is the development of adaptive hybrid constructs produced with multimaterial VP.
目前,针对临界尺寸骨缺损的治疗选择仅限于金属接骨术、自体骨移植或钙基植入物来填补缺口。增材制造技术提供了一种可能的替代方案。基于光的立体光固化(VP)三维打印工艺尤其值得关注,因为它能够以高分辨率打印复杂的支架结构。本综述比较了多种立体光固化工艺以及所使用的树脂成分与肌肉骨骼细胞和组织的相互作用。结果显示出卓越的打印能力,超过了其他打印方法的潜力。然而,尽管有各种生物相容性材料可供使用,但依靠单一材料构建时,到目前为止尚未达到骨的机械强度或临床应用所需的规模。一种可能的解决方案是开发采用多材料VP生产的适应性混合构建体。