Zhou Hao, Hu Shunying, Jin Qinhua, Shi Chen, Zhang Ying, Zhu Pingjun, Ma Qiang, Tian Feng, Chen Yundai
Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
J Am Heart Assoc. 2017 Mar 13;6(3):e005328. doi: 10.1161/JAHA.116.005328.
The cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemia/reperfusion injury induces cardiac microcirculation collapse.
In wild-type mice, mitochondrial fission factor (Mff) expression increased in response to acute microvascular ischemia/reperfusion injury. Compared with wild-type mice, homozygous Mff-deficient (Mff) mice exhibited a smaller infarcted area, restored cardiac function, improved blood flow, and reduced microcirculation perfusion defects. Histopathology analysis demonstrated that cardiac microcirculation endothelial cells (CMECs) in Mff mice had an intact endothelial barrier, recovered phospho-endothelial nitric oxide synthase production, opened lumen, undivided mitochondrial structures, and less CMEC death. In vitro, Mff-deficient CMECs (derived from Mff mice or Mff small interfering RNA-treated) demonstrated less mitochondrial fission and mitochondrial-dependent apoptosis compared with cells derived from wild-type mice. The loss of Mff inhibited mitochondrial permeability transition pore opening via blocking the oligomerization of voltage-dependent anion channel 1 and subsequent hexokinase 2 separation from mitochondria. Moreover, Mff deficiency reduced the cyt-c leakage into the cytoplasm by alleviating cardiolipin oxidation resulting from damage to the electron transport chain complexes and mitochondrial reactive oxygen species overproduction.
This evidence clearly illustrates that microcirculatory ischemia/reperfusion injury can be attributed to Mff-dependent mitochondrial fission via voltage-dependent anion channel 1/hexokinase 2-mediated mitochondrial permeability transition pore opening and mitochondrial reactive oxygen species/cardiolipin involved cyt-c release.
经皮冠状动脉介入治疗后心脏微血管系统的缺血/再灌注损伤是一个临床棘手问题。本研究探讨缺血/再灌注损伤诱导心脏微循环衰竭的机制。
在野生型小鼠中,急性微血管缺血/再灌注损伤后线粒体分裂因子(Mff)表达增加。与野生型小鼠相比,纯合Mff缺陷(Mff -/-)小鼠梗死面积更小、心脏功能恢复、血流改善且微循环灌注缺陷减少。组织病理学分析表明,Mff -/-小鼠的心脏微循环内皮细胞(CMECs)具有完整的内皮屏障,磷酸化内皮型一氧化氮合酶生成恢复,管腔开放,线粒体结构未分裂,且CMECs死亡较少。在体外,与源自野生型小鼠的细胞相比,Mff缺陷的CMECs(源自Mff -/-小鼠或经Mff小干扰RNA处理)表现出较少的线粒体分裂和线粒体依赖性凋亡。Mff的缺失通过阻断电压依赖性阴离子通道1的寡聚化以及随后己糖激酶2与线粒体的分离来抑制线粒体通透性转换孔开放。此外,Mff缺陷通过减轻电子传递链复合物损伤和线粒体活性氧过度产生所导致的心磷脂氧化,减少了细胞色素c泄漏到细胞质中。
该证据清楚地表明,微循环缺血/再灌注损伤可归因于通过电压依赖性阴离子通道1/己糖激酶2介导的线粒体通透性转换孔开放以及线粒体活性氧/心磷脂参与的细胞色素c释放所导致的Mff依赖性线粒体分裂。