Zhang Miao, Zhang Tong, Zou Rongjun, He Kunyang, Huang Ru, Feng Jingrui, Hu Jinlin, Ge Teng, Fan Xiaoping, Zhou Hao, Chen Yang
College of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
Heart Failure Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China.
J Transl Int Med. 2025 Jun 20;13(3):211-240. doi: 10.1515/jtim-2025-0030. eCollection 2025 Jun.
Mitochondrial dysfunction is increasingly recognized as a critical driver in the pathogenesis of cardiovascular diseases. Mitochondrial quality control (MQC) is an ensemble of adaptive mechanisms aimed at maintaining mitochondrial integrity and functionality and is essential for cardiomyocyte viability and optimal cardiac performance under the stress of cardiovascular pathology. The key MQC components include mitochondrial fission, fusion, mitophagy, and mitochondria-dependent cell death, each contributing uniquely to cellular homeostasis. The dynamic interplay among these processes is intricately linked to pathological phenomena, such as redox imbalance, calcium overload, dysregulated energy metabolism, impaired signal transduction, mitochondrial unfolded protein response, and endoplasmic reticulum stress. Aberrant mitochondrial fission is an early marker of mitochondrial injury and cardiomyocyte apoptosis, whereas reduced mitochondrial fusion is frequently observed in stressed cardiomyocytes and is associated with mitochondrial dysfunction and cardiac impairment. Mitophagy is a protective, selective autophagic degradation process that eliminates structurally compromised mitochondria, preserving mitochondrial network integrity. However, dysregulated mitophagy can exacerbate cellular injury, promoting cell death. Beyond their role as the primary energy source of the cell, mitochondria are also central regulators of cardiomyocyte survival, mediating apoptosis and necroptosis in reperfused myocardium. Consequently, MQC impairment may be a determining factor in cardiomyocyte fate. This review consolidates current insights into the regulatory mechanisms and pathological significance of MQC across diverse cardiovascular conditions, highlighting potential therapeutic avenues for the clinical management of heart diseases.
线粒体功能障碍日益被认为是心血管疾病发病机制中的关键驱动因素。线粒体质量控制(MQC)是一组旨在维持线粒体完整性和功能的适应性机制,对于心血管病理应激下心肌细胞的存活和最佳心脏功能至关重要。关键的MQC组件包括线粒体分裂、融合、线粒体自噬和线粒体依赖性细胞死亡,每个组件对细胞内稳态都有独特贡献。这些过程之间的动态相互作用与氧化还原失衡、钙超载、能量代谢失调、信号转导受损、线粒体未折叠蛋白反应和内质网应激等病理现象密切相关。异常的线粒体分裂是线粒体损伤和心肌细胞凋亡的早期标志物,而应激心肌细胞中经常观察到线粒体融合减少,这与线粒体功能障碍和心脏损伤有关。线粒体自噬是一种保护性的选择性自噬降解过程,可消除结构受损的线粒体,保持线粒体网络完整性。然而,线粒体自噬失调会加剧细胞损伤,促进细胞死亡。除了作为细胞的主要能量来源外,线粒体还是心肌细胞存活的核心调节因子,介导再灌注心肌中的凋亡和坏死性凋亡。因此,MQC损伤可能是决定心肌细胞命运的因素。本综述整合了目前对不同心血管疾病状态下MQC的调节机制和病理意义的见解,强调了心脏病临床管理的潜在治疗途径。