Suppr超能文献

评估用于单核苷酸和拷贝数变异的罕见病二代测序(NGS)面板的检测性能

Evaluating the Calling Performance of a Rare Disease NGS Panel for Single Nucleotide and Copy Number Variants.

作者信息

Cacheiro P, Ordóñez-Ugalde A, Quintáns B, Piñeiro-Hermida S, Amigo J, García-Murias M, Pascual-Pascual S I, Grandas F, Arpa J, Carracedo A, Sobrido M J

机构信息

Neurogenetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico de Santiago, level-2, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.

Grupo de Medicina Xenómica, CIBERER-U711, Santiago de Compostela, Spain.

出版信息

Mol Diagn Ther. 2017 Jun;21(3):303-313. doi: 10.1007/s40291-017-0268-x.

Abstract

INTRODUCTION

Variant detection protocols for clinical next-generation sequencing (NGS) need application-specific optimization. Our aim was to analyze the performance of single nucleotide variant (SNV) and copy number (CNV) detection programs on an NGS panel for a rare disease.

METHODS

Thirty genes were sequenced in 83 patients with hereditary spastic paraplegia. The variant calls obtained with LifeScope, GATK UnifiedGenotyper and GATK HaplotypeCaller were compared with Sanger sequencing. The calling efficiency was evaluated for 187 (56 unique) SNVs and indels. Five multiexon deletions detected by multiple ligation probe assay were assessed from the NGS panel data with ExomeDepth, panelcn.MOPS and CNVPanelizer software.

RESULTS

There were 48/51 (94%) SNVs and 1/5 (20%) indels consistently detected by all the calling algorithms. Two SNVs were not detected by any of the callers because of a rare reference allele, and one SNV in a low coverage region was only detected by two algorithms. Regarding CNVs, ExomeDepth detected 5/5 multi-exon deletions, panelcn.MOPs 4/5 and only 3/5 deletions were accurately detected by CNVPanelizer.

CONCLUSIONS

The calling efficiency of NGS algorithms for SNVs is influenced by variant type and coverage. NGS protocols need to account for the presence of rare variants in the reference sequence as well as for ambiguities in indel calling. CNV detection algorithms can be used to identify large deletions from NGS panel data for diagnostic applications; however, sensitivity depends on coverage, selection of the reference set and deletion size. We recommend the incorporation of several variant callers in the NGS pipeline to maximize variant detection efficiency.

摘要

引言

临床下一代测序(NGS)的变异检测方案需要针对特定应用进行优化。我们的目的是分析用于罕见病的NGS检测板上单核苷酸变异(SNV)和拷贝数变异(CNV)检测程序的性能。

方法

对83例遗传性痉挛性截瘫患者的30个基因进行测序。将使用LifeScope、GATK统一基因分型器和GATK单倍型分型器获得的变异调用结果与桑格测序进行比较。对187个(56个独特的)SNV和插入缺失的调用效率进行了评估。使用ExomeDepth、panelcn.MOPS和CNVPanelizer软件从NGS检测板数据中评估通过多重连接探针分析检测到的5个多外显子缺失。

结果

所有调用算法一致检测到48/51(94%)个SNV和1/5(20%)个插入缺失。由于参考等位基因罕见,有2个SNV未被任何调用者检测到,低覆盖区域的1个SNV仅被两种算法检测到。关于CNV,ExomeDepth检测到5/5个多外显子缺失,panelcn.MOPs检测到4/5个,而CNVPanelizer仅准确检测到3/5个缺失。

结论

NGS算法对SNV的调用效率受变异类型和覆盖度影响。NGS方案需要考虑参考序列中罕见变异的存在以及插入缺失调用中的模糊性。CNV检测算法可用于从NGS检测板数据中识别大的缺失以用于诊断应用;然而,灵敏度取决于覆盖度、参考集的选择和缺失大小。我们建议在NGS流程中纳入多种变异调用者以最大化变异检测效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验