Suppr超能文献

贝叶斯因子分析中对反射不变性的处理。

Dealing with Reflection Invariance in Bayesian Factor Analysis.

机构信息

Department of Statistics, University of Washington, Box 354320, Seattle, WA, 98195, USA.

出版信息

Psychometrika. 2017 Jun;82(2):295-307. doi: 10.1007/s11336-017-9564-y. Epub 2017 Mar 13.

Abstract

This paper considers the reflection unidentifiability problem in confirmatory factor analysis (CFA) and the associated implications for Bayesian estimation. We note a direct analogy between the multimodality in CFA models that is due to all possible column sign changes in the matrix of loadings and the multimodality in finite mixture models that is due to all possible relabelings of the mixture components. Drawing on this analogy, we derive and present a simple approach for dealing with reflection in variance in Bayesian factor analysis. We recommend fitting Bayesian factor analysis models without rotational constraints on the loadings-allowing Markov chain Monte Carlo algorithms to explore the full posterior distribution-and then using a relabeling algorithm to pick a factor solution that corresponds to one mode. We demonstrate our approach on the case of a bifactor model; however, the relabeling algorithm is straightforward to generalize for handling multimodalities due to sign invariance in the likelihood in other factor analysis models.

摘要

本文考虑了验证性因素分析(CFA)中的反射不可识别问题,以及其对贝叶斯估计的相关影响。我们注意到,在 CFA 模型中,由于载荷矩阵中所有可能的列符号变化而导致的多模态性,与由于混合成分的所有可能重新标记而导致的有限混合模型中的多模态性之间存在直接的类比。借鉴这一类比,我们推导出并提出了一种简单的方法来处理贝叶斯因子分析中方差的反射问题。我们建议在不限制载荷旋转的情况下拟合贝叶斯因子分析模型——允许马尔可夫链蒙特卡罗算法探索完整的后验分布——然后使用重新标记算法选择一个与一个模式相对应的因子解。我们在双因子模型的情况下演示了我们的方法;然而,对于由于似然中不变性导致的其他因子分析模型中的多模态性,重新标记算法很容易推广。

相似文献

1
Dealing with Reflection Invariance in Bayesian Factor Analysis.
Psychometrika. 2017 Jun;82(2):295-307. doi: 10.1007/s11336-017-9564-y. Epub 2017 Mar 13.
2
Bayesian analysis for finite mixture in non-recursive non-linear structural equation models.
Br J Math Stat Psychol. 2010 May;63(Pt 2):361-77. doi: 10.1348/000711009X466367. Epub 2009 Aug 28.
3
Bayesian restoration of a hidden Markov chain with applications to DNA sequencing.
J Comput Biol. 1999 Summer;6(2):261-77. doi: 10.1089/cmb.1999.6.261.
4
Generalized Fiducial Inference for Binary Logistic Item Response Models.
Psychometrika. 2016 Jun;81(2):290-324. doi: 10.1007/s11336-015-9492-7. Epub 2016 Jan 14.
5
Comparing variational Bayes with Markov chain Monte Carlo for Bayesian computation in neuroimaging.
Stat Methods Med Res. 2013 Aug;22(4):398-423. doi: 10.1177/0962280212448973. Epub 2012 May 28.
7
Bayesian internal dosimetry calculations using Markov Chain Monte Carlo.
Radiat Prot Dosimetry. 2002;98(2):191-8. doi: 10.1093/oxfordjournals.rpd.a006709.
8
Multilevel Heterogeneous Factor Analysis and Application to Ecological Momentary Assessment.
Psychometrika. 2020 Mar;85(1):75-100. doi: 10.1007/s11336-019-09691-4. Epub 2019 Nov 22.
9
Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models.
Stat Med. 2000;19(17-18):2279-94. doi: 10.1002/1097-0258(20000915/30)19:17/18<2279::aid-sim569>3.0.co;2-r.
10
A simple introduction to Markov Chain Monte-Carlo sampling.
Psychon Bull Rev. 2018 Feb;25(1):143-154. doi: 10.3758/s13423-016-1015-8.

引用本文的文献

1
Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis.
J Am Stat Assoc. 2025 Jun;120(550):1239-1253. doi: 10.1080/01621459.2024.2408777. Epub 2024 Dec 5.
3
Person explanatory multidimensional item response theory with the instrument package in R.
Behav Res Methods. 2024 Dec;56(8):8540-8551. doi: 10.3758/s13428-024-02490-5. Epub 2024 Aug 26.
4
Nominal Factor Analysis of Situational Judgment Tests: Evaluation of Latent Dimensionality and Factorial Invariance.
Educ Psychol Meas. 2021 Dec;81(6):1054-1088. doi: 10.1177/0013164421994321. Epub 2021 Feb 25.

本文引用的文献

1
Bayesian hierarchical multivariate formulation with factor analysis for nested ordinal data.
Psychometrika. 2014 Apr;79(2):275-302. doi: 10.1007/s11336-013-9339-z. Epub 2013 Apr 25.
2
Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis.
J Comput Graph Stat. 2009 Jun 1;18(2):306-320. doi: 10.1198/jcgs.2009.07145.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验