Suppr超能文献

通过子空间因子分析从多个数据源推断协方差结构。

Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis.

作者信息

Chandra Noirrit Kiran, Dunson David B, Xu Jason

机构信息

Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX.

Department of Statistical Science, Duke University, Durham, NC.

出版信息

J Am Stat Assoc. 2025 Jun;120(550):1239-1253. doi: 10.1080/01621459.2024.2408777. Epub 2024 Dec 5.

Abstract

Factor analysis provides a canonical framework for imposing lower-dimensional structure such as sparse covariance in high-dimensional data. High-dimensional data on the same set of variables are often collected under different conditions, for instance in reproducing studies across research groups. In such cases, it is natural to seek to learn the shared versus condition-specific structure. Existing hierarchical extensions of factor analysis have been proposed, but face practical issues including identifiability problems. To address these shortcomings, we propose a class of SUbspace Factor Analysis (SUFA) models, which characterize variation across groups at the level of a lower-dimensional subspace. We prove that the proposed class of SUFA models lead to identifiability of the shared versus group-specific components of the covariance, and study their posterior contraction properties. Taking a Bayesian approach, these contributions are developed alongside efficient posterior computation algorithms. Our sampler fully integrates out latent variables, is easily parallelizable and has complexity that does not depend on sample size. We illustrate the methods through application to integration of multiple gene expression datasets relevant to immunology.

摘要

因子分析提供了一个规范框架,用于在高维数据中施加低维结构,如稀疏协方差。同一组变量的高维数据通常在不同条件下收集,例如在跨研究组的重复性研究中。在这种情况下,自然会寻求学习共享结构与特定条件结构。已经提出了因子分析的现有层次扩展,但面临包括可识别性问题在内的实际问题。为了解决这些缺点,我们提出了一类子空间因子分析(SUFA)模型,该模型在低维子空间层面刻画组间差异。我们证明,所提出的SUFA模型类能够实现协方差的共享部分与特定组部分的可识别性,并研究它们的后验收缩性质。采用贝叶斯方法,这些成果与高效的后验计算算法一起得到发展。我们的采样器完全积分掉潜在变量,易于并行化,并且复杂度不依赖于样本大小。我们通过将方法应用于整合多个与免疫学相关的基因表达数据集来说明这些方法。

相似文献

1
Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis.
J Am Stat Assoc. 2025 Jun;120(550):1239-1253. doi: 10.1080/01621459.2024.2408777. Epub 2024 Dec 5.
4
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Plug-and-play use of tree-based methods: consequences for clinical prediction modeling.
J Clin Epidemiol. 2025 Aug;184:111834. doi: 10.1016/j.jclinepi.2025.111834. Epub 2025 May 19.

本文引用的文献

1
Tyler J. VanderWeele's contribution to the Discussion of 'Vintage Factor Analysis with Varimax Performs Statistical Inference' by Rohe & Zeng.
J R Stat Soc Series B Stat Methodol. 2023 Sep;85(4):1091-1092. doi: 10.1093/jrsssb/qkad045. Epub 2023 Apr 6.
3
Bayesian combinatorial MultiStudy factor analysis.
Ann Appl Stat. 2023 Sep;17(3):2212-2235. doi: 10.1214/22-aoas1715. Epub 2023 Sep 7.
4
PERTURBED FACTOR ANALYSIS: ACCOUNTING FOR GROUP DIFFERENCES IN EXPOSURE PROFILES.
Ann Appl Stat. 2021 Sep;15(3):1386-1404. doi: 10.1214/20-aoas1435. Epub 2021 Sep 23.
5
Generalized infinite factorization models.
Biometrika. 2022 Sep;109(3):817-835. doi: 10.1093/biomet/asab056. Epub 2022 Jan 19.
6
Bayesian Copula Density Deconvolution for Zero-Inflated Data in Nutritional Epidemiology.
J Am Stat Assoc. 2021;116(535):1075-1087. doi: 10.1080/01621459.2020.1782220. Epub 2020 Jul 20.
7
A Matrix-free Likelihood Method for Exploratory Factor Analysis of High-dimensional Gaussian Data.
J Comput Graph Stat. 2020;29(3):675-680. doi: 10.1080/10618600.2019.1704296. Epub 2020 Feb 7.
8
Bayesian cumulative shrinkage for infinite factorizations.
Biometrika. 2020 Sep;107(3):745-752. doi: 10.1093/biomet/asaa008. Epub 2020 May 27.
9
Cancer immunotherapy: Pros, cons and beyond.
Biomed Pharmacother. 2020 Apr;124:109821. doi: 10.1016/j.biopha.2020.109821. Epub 2020 Jan 18.
10
The cis-Regulatory Atlas of the Mouse Immune System.
Cell. 2019 Feb 7;176(4):897-912.e20. doi: 10.1016/j.cell.2018.12.036. Epub 2019 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验