Suppr超能文献

钙-ATP酶泵促进质子在肌浆网/内质网中的双向运输。

The Ca-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum.

作者信息

Espinoza-Fonseca L Michel

机构信息

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Mol Biosyst. 2017 Mar 28;13(4):633-637. doi: 10.1039/c7mb00065k.

Abstract

Ca transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca and other ions across the SR. During Ca uptake by the SR Ca-ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.

摘要

钙离子跨肌浆网/内质网(SR)的转运在细胞内钙离子稳态、信号传导、细胞分化和肌肉收缩性中起着至关重要的作用。在肌浆网摄取和释放钙离子的过程中,需要质子流来平衡因钙离子和其他离子跨肌浆网交换而产生的电荷亏缺。在肌浆网钙离子ATP酶(SERCA)摄取钙离子期间,两个质子从肌浆网腔反向转运至胞质溶胶,从而部分补偿因钙离子转运而移动的电荷。研究表明,在钙离子释放过程中质子也从胞质溶胶转运至肌浆网腔,但尚未描述促进质子转运至肌浆网腔的转运体。在本文中,我们提出SERCA形成了促进质子双向跨肌浆网转运的孔道。我们描述了SERCA中充满水的孔道的位置和结构,这些孔道形成了质子穿过肌浆网膜的胞质溶胶和腔途径。基于此结构信息,我们提出了在钙离子主动转运期间质子转运至胞质溶胶以及在内源性调节蛋白抑制SERCA期间质子转运至肌浆网腔的机制模型。最后,我们讨论了SERCA介导的质子双向跨肌肉和非肌肉细胞肌浆网膜转运的生理后果。

相似文献

2
Multiscale Simulation Reveals Passive Proton Transport Through SERCA on the Microsecond Timescale.
Biophys J. 2020 Sep 1;119(5):1033-1040. doi: 10.1016/j.bpj.2020.07.027. Epub 2020 Aug 6.
3
Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase.
J Biol Chem. 2013 Apr 12;288(15):10759-65. doi: 10.1074/jbc.R112.436550. Epub 2013 Feb 11.
4
Atomistic Characterization of the First Step of Calcium Pump Activation Associated with Proton Countertransport.
Biochemistry. 2015 Aug 25;54(33):5235-41. doi: 10.1021/acs.biochem.5b00672. Epub 2015 Aug 13.
5
Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content.
Adv Exp Med Biol. 2020;1131:337-370. doi: 10.1007/978-3-030-12457-1_14.
6
The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA).
Can J Physiol Pharmacol. 2015 Oct;93(10):843-54. doi: 10.1139/cjpp-2014-0463. Epub 2015 Jan 19.
7
Structural Basis for the Function of the C-Terminal Proton Release Pathway in the Calcium Pump.
Int J Mol Sci. 2021 Mar 29;22(7):3507. doi: 10.3390/ijms22073507.
10
Microsecond Molecular Simulations Reveal a Transient Proton Pathway in the Calcium Pump.
J Am Chem Soc. 2015 Jun 10;137(22):7055-8. doi: 10.1021/jacs.5b03814. Epub 2015 Jun 2.

引用本文的文献

1
Molecular mechanism of ultrafast transport by plasma membrane Ca-ATPases.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09402-3.
2
The contribution of the Golgi and the endoplasmic reticulum to calcium and pH homeostasis in Toxoplasma gondii.
J Biol Chem. 2025 Apr;301(4):108372. doi: 10.1016/j.jbc.2025.108372. Epub 2025 Mar 3.
3
A comprehensive review on physiological and biological activities of carnosine: turning from preclinical facts to potential clinical applications.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb;398(2):1341-1366. doi: 10.1007/s00210-024-03427-7. Epub 2024 Sep 20.
4
The mechanism and prevention of mitochondrial injury after exercise.
J Physiol Biochem. 2021 May;77(2):215-225. doi: 10.1007/s13105-021-00802-3. Epub 2021 Mar 2.
5
Multiscale Simulation Reveals Passive Proton Transport Through SERCA on the Microsecond Timescale.
Biophys J. 2020 Sep 1;119(5):1033-1040. doi: 10.1016/j.bpj.2020.07.027. Epub 2020 Aug 6.
6
A Computational Swiss Army Knife Approach to Unraveling the Secrets of Proton Movement through SERCA.
Biophys J. 2020 Sep 1;119(5):890-891. doi: 10.1016/j.bpj.2020.07.028. Epub 2020 Aug 6.
7
The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells.
Endocrinology. 2020 Feb 1;161(2). doi: 10.1210/endocr/bqz028.
8
Emerging Diversity in Lipid-Protein Interactions.
Chem Rev. 2019 May 8;119(9):5775-5848. doi: 10.1021/acs.chemrev.8b00451. Epub 2019 Feb 13.

本文引用的文献

1
Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides.
Sci Signal. 2016 Dec 6;9(457):ra119. doi: 10.1126/scisignal.aaj1460.
2
Phospholamban spontaneously reconstitutes into giant unilamellar vesicles where it generates a cation selective channel.
Phys Chem Chem Phys. 2016 Jan 21;18(3):1629-36. doi: 10.1039/c5cp05893g. Epub 2015 Dec 17.
3
Atomistic Characterization of the First Step of Calcium Pump Activation Associated with Proton Countertransport.
Biochemistry. 2015 Aug 25;54(33):5235-41. doi: 10.1021/acs.biochem.5b00672. Epub 2015 Aug 13.
4
Microsecond Molecular Simulations Reveal a Transient Proton Pathway in the Calcium Pump.
J Am Chem Soc. 2015 Jun 10;137(22):7055-8. doi: 10.1021/jacs.5b03814. Epub 2015 Jun 2.
5
Sarcolipin and phospholamban inhibit the calcium pump by populating a similar metal ion-free intermediate state.
Biochem Biophys Res Commun. 2015;463(1-2):37-41. doi: 10.1016/j.bbrc.2015.05.012. Epub 2015 May 15.
6
Atomic-level mechanisms for phospholamban regulation of the calcium pump.
Biophys J. 2015 Apr 7;108(7):1697-1708. doi: 10.1016/j.bpj.2015.03.004.
7
Endoplasmic reticulum calcium pumps and cancer cell differentiation.
Biomolecules. 2012 Mar 5;2(1):165-86. doi: 10.3390/biom2010165.
8
Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump.
PLoS One. 2014 Apr 23;9(4):e95979. doi: 10.1371/journal.pone.0095979. eCollection 2014.
9
Calcium signaling and endoplasmic reticulum dynamics during fertilization in marine protostome worms belonging to the phylum Nemertea.
Biochem Biophys Res Commun. 2014 Aug 1;450(3):1182-7. doi: 10.1016/j.bbrc.2014.03.156. Epub 2014 Apr 8.
10
Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis.
Circ Res. 2014 Feb 14;114(4):706-16. doi: 10.1161/CIRCRESAHA.114.301816.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验