Suppr超能文献

金属-基底介导的纳米粒子二聚体中的等离子体杂化对光致发光线宽收缩和强度增强的影响。

Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.

机构信息

Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China.

School of Electrical & Electronic Engineering, Nanyang Technological University , Nanyang Avenue, 639798, Singapore.

出版信息

ACS Nano. 2017 Mar 28;11(3):3067-3080. doi: 10.1021/acsnano.7b00048. Epub 2017 Mar 17.

Abstract

Metal-film-coupled nanoparticles with subnanometer particle-film gaps possess an ultrasmall mode volume, responsible for a variety of intriguing phenomena in plasmonic nanophotonics. Due to the large radiative loss associated with dipolar coupling, however, the plasmonic-film-coupled nanocavities usually feature a low-quality factor, setting an ultimate limit of the increased light-matter interaction strength. Here, we demonstrate a plasmonic nanocavity composed of a metal-film-coupled nanoparticle dimer, exhibiting a significantly improved quality factor. Compared to a silica-supported dimer, the spectral line width of the nanocavity plasmon resonance is reduced by a factor of ∼4.6 and is even smaller than its monomer counterpart (∼30% reduction). Comprehensive theoretical analyses reveal that this pronounced resonance narrowing effect can be attributed to intense film-mediated plasmon hybridization between the bonding dipolar and quadrupolar gap modes in the dimer. More importantly, the invoking of the dark quadrupole resonance leads to a giant photoluminescence intensity enhancement (∼200 times) and dramatic emission line-width narrowing (∼4.6 times), compared to the silica-supported dimer. The similar spectral characteristics of the measured plasmonic scattering and photoluminescence emission indicate that the radiative decay of the coupled plasmons in the nanocavity is the origin of the observed photoluminescence, consistent with a proposed phenomenological model. Numerical calculations show that the intensity enhancement is mainly contributed by the dimer-film gap rather than the interparticle gap. These findings not only shed more light on the hybridized interaction between plasmon modes but also deepen the understanding of photoluminescence emission in coupled plasmonic nanostructures.

摘要

具有亚纳米颗粒-薄膜间隙的金属薄膜耦合纳米粒子具有超小的模式体积,这是等离子体纳米光子学中各种有趣现象的原因。然而,由于与偶极子耦合相关的辐射损耗较大,等离子体-薄膜耦合纳米腔通常具有低品质因数,这设定了增加光物质相互作用强度的最终极限。在这里,我们展示了一种由金属薄膜耦合纳米粒子二聚体组成的等离子体纳米腔,其品质因数得到了显著提高。与二氧化硅支撑的二聚体相比,纳米腔等离子体共振的光谱线宽减小了约 4.6 倍,甚至比其单体对应物更小(约 30%的减小)。综合理论分析表明,这种显著的共振窄化效应可归因于二聚体中键合偶极和四极间隙模式之间强烈的薄膜介导等离子体杂化。更重要的是,引入暗四极共振导致了巨大的光致发光强度增强(约 200 倍)和发射线宽急剧变窄(约 4.6 倍),与二氧化硅支撑的二聚体相比。测量的等离子体散射和光致发光发射的相似光谱特征表明,纳米腔中耦合等离子体的辐射衰减是观察到的光致发光的起源,与提出的唯象模型一致。数值计算表明,强度增强主要归因于二聚体-薄膜间隙,而不是粒子间间隙。这些发现不仅进一步了解了等离子体模式之间的混合相互作用,而且加深了对耦合等离子体纳米结构中光致发光发射的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验