State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan 430074, China.
Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States.
J Am Chem Soc. 2017 Mar 29;139(12):4290-4293. doi: 10.1021/jacs.7b00261. Epub 2017 Mar 16.
Tin (Sn) is known to be a good catalyst for electrochemical reduction of CO to formate in 0.5 M KHCO. But when a thin layer of SnO is coated over Cu nanoparticles, the reduction becomes Sn-thickness dependent: the thicker (1.8 nm) shell shows Sn-like activity to generate formate whereas the thinner (0.8 nm) shell is selective to the formation of CO with the conversion Faradaic efficiency (FE) reaching 93% at -0.7 V (vs reversible hydrogen electrode (RHE)). Theoretical calculations suggest that the 0.8 nm SnO shell likely alloys with trace of Cu, causing the SnO lattice to be uniaxially compressed and favors the production of CO over formate. The report demonstrates a new strategy to tune NP catalyst selectivity for the electrochemical reduction of CO via the tunable core/shell structure.
锡(Sn)是一种已知的良好催化剂,可将 CO 在 0.5 M KHCO 中电化学还原为甲酸盐。但当在铜纳米颗粒上涂覆一层薄薄的 SnO 时,还原过程变得依赖于 Sn 的厚度:较厚的(1.8nm)壳层表现出类似 Sn 的活性,生成甲酸盐,而较薄的(0.8nm)壳层则选择性地形成 CO,其转化法拉第效率(FE)在-0.7V(相对于可逆氢电极(RHE))时达到 93%。理论计算表明,0.8nm 的 SnO 壳层可能与痕量的 Cu 形成合金,导致 SnO 晶格被单轴压缩,并有利于生成 CO 而不是甲酸盐。该报告展示了一种通过可调谐核/壳结构来调节 NP 催化剂对 CO 电化学还原选择性的新策略。