State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China.
Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36996-37004. doi: 10.1021/acsami.8b12747. Epub 2018 Oct 19.
In this work, monodisperse core/shell Cu/InO nanoparticles (NPs) were developed to boost efficient and tunable syngas formation via electrochemical CO reduction for the first time. The efficiency and composition of syngas production on the developed carbon-supported Cu/InO catalysts are highly dependent on the InO shell thickness (0.4-1.5 nm). As a result, a wide H/CO ratio (4/1 to 0.4/1) was achieved on the Cu/InO catalysts by controlling the shell thickness and the applied potential (from -0.4 to -0.9 V vs reversible hydrogen electrode), with Faraday efficiency of syngas formation larger than 90%. Specifically, the best-performing Cu/InO catalyst demonstrates remarkably large current densities under low overpotentials (4.6 and 12.7 mA/cm at -0.6 and -0.9 V, respectively), which are competitive with most of the reported systems for syngas formation. Mechanistic discussion implicates that the synergistic effect between lattice compression and Cu doping in the InO shell may enhance the binding of *COOH on the Cu/InO NP surface, leading to the enhanced CO generation relative to Cu and InO catalysts. This report demonstrates a new strategy to realize efficient and tunable syngas formation via rationally designed core/shell catalyst configuration.
在这项工作中,首次开发了单分散核/壳 Cu/InO 纳米粒子 (NPs),以通过电化学 CO 还原来促进高效且可调谐的 syngas 形成。所开发的碳负载 Cu/InO 催化剂上 syngas 生成的效率和组成高度依赖于 InO 壳层厚度 (0.4-1.5nm)。因此,通过控制壳层厚度和施加的电势(从-0.4 到-0.9V 相对于可逆氢电极),在 Cu/InO 催化剂上实现了较宽的 H/CO 比(4/1 至 0.4/1),合成气的法拉第效率大于 90%。具体而言,表现最佳的 Cu/InO 催化剂在低过电势下显示出显著的大电流密度(分别在-0.6 和-0.9V 时为 4.6 和 12.7mA/cm),这与大多数报道的用于 syngas 形成的系统相当。机理讨论表明,InO 壳晶格压缩和 Cu 掺杂的协同效应可能增强了*COOH 在 Cu/InO NP 表面的结合,从而相对于 Cu 和 InO 催化剂增强了 CO 的生成。本报告展示了一种通过合理设计核/壳催化剂结构来实现高效且可调谐的 syngas 形成的新策略。