Bodenheimer Annette M, O'Dell William B, Stanley Christopher B, Meilleur Flora
Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Carbohydr Res. 2017 Aug 7;448:200-204. doi: 10.1016/j.carres.2017.03.001. Epub 2017 Mar 4.
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.
对氢/氘的敏感性以及未观察到的辐射损伤使得冷中子成为研究具有高光敏基团蛋白质结构的理想探针,这些蛋白质包括裂解多糖单加氧酶(LPMO)的铜中心、黄素腺嘌呤二核苷酸(FAD)以及纤维二糖脱氢酶(CDH)的血红素氧化还原辅因子。在此,分别使用中子晶体学和小角中子散射来研究粗糙脉孢菌LPMO9D(NcLPMO9D)和CDHIIA(NcCDHIIA)。LPMO的存在极大地提高了商业糖苷水解酶混合物在纤维素解聚中的效率。LPMO可以从CDH接收电子以激活分子氧来氧化纤维素,从而导致链断裂和局部结晶度的破坏。利用中子蛋白质晶体学,可以确定NcLPMO9D整个结构中的氢/氘原子。在铜活性位点,可以确定His1、His84、His157和Tyr168侧链的质子化状态以及水分子的取向。小角中子散射测量提供了氧化态下脱氢酶和细胞色素结构域均呈伸长构象的NcCDHIIA的低分辨率模型。这项工作证明了中子衍射和散射对于表征氧化纤维素解构关键酶的适用性。