Suppr超能文献

SPOP突变通过协调调控PI3K/mTOR和AR信号通路在体内驱动前列腺肿瘤发生。

SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling.

作者信息

Blattner Mirjam, Liu Deli, Robinson Brian D, Huang Dennis, Poliakov Anton, Gao Dong, Nataraj Srilakshmi, Deonarine Lesa D, Augello Michael A, Sailer Verena, Ponnala Lalit, Ittmann Michael, Chinnaiyan Arul M, Sboner Andrea, Chen Yu, Rubin Mark A, Barbieri Christopher E

机构信息

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.

Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA.

出版信息

Cancer Cell. 2017 Mar 13;31(3):436-451. doi: 10.1016/j.ccell.2017.02.004.

Abstract

Recurrent point mutations in SPOP define a distinct molecular subclass of prostate cancer. Here, we describe a mouse model showing that mutant SPOP drives prostate tumorigenesis in vivo. Conditional expression of mutant SPOP in the prostate dramatically altered phenotypes in the setting of Pten loss, with early neoplastic lesions (high-grade prostatic intraepithelial neoplasia) with striking nuclear atypia and invasive, poorly differentiated carcinoma. In mouse prostate organoids, mutant SPOP drove increased proliferation and a transcriptional signature consistent with human prostate cancer. Using these models and human prostate cancer samples, we show that SPOP mutation activates both PI3K/mTOR and androgen receptor signaling, effectively uncoupling the normal negative feedback between these two pathways.

摘要

SPOP基因中的复发性点突变定义了前列腺癌的一个独特分子亚类。在此,我们描述了一种小鼠模型,该模型显示突变型SPOP在体内驱动前列腺肿瘤发生。在前列腺中条件性表达突变型SPOP在PTEN缺失的情况下显著改变了表型,出现了具有明显核异型性的早期肿瘤性病变(高级别前列腺上皮内瘤变)以及侵袭性、低分化癌。在小鼠前列腺类器官中,突变型SPOP驱动增殖增加以及与人类前列腺癌一致的转录特征。利用这些模型和人类前列腺癌样本,我们表明SPOP突变激活了PI3K/mTOR和雄激素受体信号传导,有效地解除了这两条通路之间正常的负反馈。

相似文献

3
Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer.
Cancer Res. 2014 Oct 1;74(19):5631-43. doi: 10.1158/0008-5472.CAN-14-0476.
5
SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG.
J Clin Invest. 2018 Jan 2;128(1):381-386. doi: 10.1172/JCI96551. Epub 2017 Dec 4.
7
Interplay Among PI3K/AKT, PTEN/FOXO and AR Signaling in Prostate Cancer.
Adv Exp Med Biol. 2019;1210:319-331. doi: 10.1007/978-3-030-32656-2_14.
8
Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer.
Nat Commun. 2021 Feb 2;12(1):734. doi: 10.1038/s41467-020-20820-x.
10
CHD1 and SPOP synergistically protect prostate epithelial cells from DNA damage.
Prostate. 2021 Jan;81(1):81-88. doi: 10.1002/pros.24080. Epub 2020 Oct 6.

引用本文的文献

2
Deuterium labeling enables proteome-wide turnover kinetics analysis in cell culture.
Cell Rep Methods. 2025 Jul 21;5(7):101104. doi: 10.1016/j.crmeth.2025.101104. Epub 2025 Jul 10.
4
Updates on SPOP Gene Mutations in Prostate Cancer and Computational Insights From TCGA cBioPortal Database.
Scientifica (Cairo). 2025 May 20;2025:4084224. doi: 10.1155/sci5/4084224. eCollection 2025.
7
Deuterium labeling enables proteome wide turnover kinetics analysis in cell culture.
bioRxiv. 2025 Jan 31:2025.01.30.635596. doi: 10.1101/2025.01.30.635596.
8
CRISPR/Cas9 Technology Providing the Therapeutic Landscape of Metastatic Prostate Cancer.
Pharmaceuticals (Basel). 2024 Nov 26;17(12):1589. doi: 10.3390/ph17121589.
9
Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer.
Trends Endocrinol Metab. 2025 Jan 2. doi: 10.1016/j.tem.2024.12.003.
10
Epidemiologic study on prostate cancer in Sudanese men across African ethnic groups.
Sci Rep. 2024 Nov 28;14(1):29646. doi: 10.1038/s41598-024-77475-7.

本文引用的文献

1
A Tmprss2-CreERT2 Knock-In Mouse Model for Cancer Genetic Studies on Prostate and Colon.
PLoS One. 2016 Aug 18;11(8):e0161084. doi: 10.1371/journal.pone.0161084. eCollection 2016.
2
TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.
Cancer Cell. 2016 Jun 13;29(6):846-858. doi: 10.1016/j.ccell.2016.04.012. Epub 2016 May 26.
3
The Molecular Taxonomy of Primary Prostate Cancer.
Cell. 2015 Nov 5;163(4):1011-25. doi: 10.1016/j.cell.2015.10.025.
4
2016 update of the PRIDE database and its related tools.
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56. doi: 10.1093/nar/gkv1145. Epub 2015 Nov 2.
5
Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination.
J Mol Biol. 2016 Mar 27;428(6):1256-1271. doi: 10.1016/j.jmb.2015.10.002. Epub 2015 Oct 22.
6
SPOP mutation leads to genomic instability in prostate cancer.
Elife. 2015 Sep 16;4:e09207. doi: 10.7554/eLife.09207.
7
Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation.
Mol Cell. 2015 Sep 17;59(6):904-16. doi: 10.1016/j.molcel.2015.07.025. Epub 2015 Sep 3.
8
SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression.
Mol Cell. 2015 Sep 17;59(6):917-30. doi: 10.1016/j.molcel.2015.07.026. Epub 2015 Sep 3.
9
DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis.
Cancer Cell. 2015 Jul 13;28(1):97-113. doi: 10.1016/j.ccell.2015.06.004.
10
Integrative clinical genomics of advanced prostate cancer.
Cell. 2015 May 21;161(5):1215-1228. doi: 10.1016/j.cell.2015.05.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验