Suppr超能文献

Mre11-Rad50-Nbs1-Ctp1复合物促进了具有最小序列损失的非同源末端连接。

Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in .

作者信息

Li Yanhui, Wang Jinyu, Zhou Gang, Lajeunesse Michael, Le Nga, Stawicki Brittany N, Corcino Yalitza Lopez, Berkner Kathleen L, Runge Kurt W

机构信息

Department of Molecular Genetics.

Department of Genetics and Genomic Sciences, and.

出版信息

Genetics. 2017 May;206(1):481-496. doi: 10.1534/genetics.117.200972. Epub 2017 Mar 14.

Abstract

While the Mre11-Rad50-Nbs1 (MRN) complex has known roles in repair processes like homologous recombination and microhomology-mediated end-joining, its role in nonhomologous end-joining (NHEJ) is unclear as , , and mammals have different requirements for repairing cut DNA ends. Most double-strand breaks (DSBs) require nucleolytic processing prior to DNA ligation. Therefore, we studied repair using the transposon, whose excision leaves a DSB capped by hairpin ends similar to structures generated by palindromes and trinucleotide repeats. We generated single insertions using a novel transient transfection system, and used excision to show a requirement for MRN in the NHEJ of nonligatable ends. NHEJ repair was indicated by the >1000-fold decrease in excision in cells lacking Ku or DNA ligase 4. Most repaired excision sites had <5 bp of sequence loss or mutation, characteristic for NHEJ and similar excision events in metazoans, and in contrast to the more extensive loss seen in NHEJ was reduced >1000-fold in cells lacking each MRN subunit, and loss of MRN-associated Ctp1 caused a 30-fold reduction. An Mre11 dimer is thought to hold DNA ends together for repair, and Mre11 dimerization domain mutations reduced repair 300-fold. In contrast, a mutant defective in endonucleolytic activity, the same mutant lacking Ctp1, or the triple mutant also lacking the putative hairpin nuclease Pso2 showed wild-type levels of repair. Thus, MRN may act to recruit the hairpin opening activity that allows subsequent repair.

摘要

虽然Mre11-Rad50-Nbs1(MRN)复合物在同源重组和微同源性介导的末端连接等修复过程中发挥着已知作用,但其在非同源末端连接(NHEJ)中的作用尚不清楚,因为酵母、果蝇和哺乳动物在修复切割的DNA末端方面有不同的需求。大多数双链断裂(DSB)在DNA连接之前需要进行核酸酶处理。因此,我们使用转座子研究修复,其切除会留下一个由发夹末端封闭的DSB,类似于由回文和三核苷酸重复产生的结构。我们使用一种新型的瞬时转染系统产生单拷贝插入,并利用转座子切除来显示在不可连接末端的NHEJ中对MRN的需求。在缺乏Ku或DNA连接酶4的细胞中,转座子切除减少了1000倍以上,这表明了NHEJ修复。大多数修复的切除位点的序列丢失或突变小于5个碱基对,这是NHEJ的特征以及后生动物中类似切除事件的特征,与在同源重组中看到的更广泛的丢失形成对比。在缺乏每个MRN亚基的细胞中,NHEJ减少了1000倍以上,并且与MRN相关的Ctp1的缺失导致减少了30倍。人们认为Mre11二聚体将DNA末端结合在一起进行修复,并且Mre11二聚化结构域突变使修复减少了300倍。相比之下,一个在内切核酸酶活性方面有缺陷的突变体、缺乏Ctp1的相同突变体或也缺乏推定的发夹核酸酶Pso2的三重突变体显示出野生型的修复水平。因此,MRN可能起到招募允许后续修复所需的发夹打开活性的作用。

相似文献

1
Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in .
Genetics. 2017 May;206(1):481-496. doi: 10.1534/genetics.117.200972. Epub 2017 Mar 14.
3
A curious new role for MRN in Schizosaccharomyces pombe non-homologous end-joining.
Curr Genet. 2018 Apr;64(2):359-364. doi: 10.1007/s00294-017-0760-1. Epub 2017 Oct 10.
4
The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.
DNA Repair (Amst). 2005 Nov 21;4(11):1281-94. doi: 10.1016/j.dnarep.2005.06.011. Epub 2005 Jul 25.
6
Ctp1-dependent clipping and resection of DNA double-strand breaks by Mre11 endonuclease complex are not genetically separable.
Nucleic Acids Res. 2016 Sep 30;44(17):8241-9. doi: 10.1093/nar/gkw557. Epub 2016 Jun 20.
7
Xrs2/NBS1 promote end-bridging activity of the MRE11-RAD50 complex.
Biochem Biophys Res Commun. 2024 Feb 5;695:149464. doi: 10.1016/j.bbrc.2023.149464. Epub 2023 Dec 30.
9
Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair.
Nucleic Acids Res. 2012 Dec;40(22):11435-49. doi: 10.1093/nar/gks954. Epub 2012 Oct 17.
10
Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks.
PLoS Biol. 2016 Feb 22;14(2):e1002387. doi: 10.1371/journal.pbio.1002387. eCollection 2016 Feb.

引用本文的文献

1
βTrCP facilitates MRN complex localization on chromatin to enhance DNA repair.
Commun Biol. 2025 Jul 11;8(1):1044. doi: 10.1038/s42003-025-08462-5.
2
DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation.
Int J Mol Sci. 2024 Feb 13;25(4):2227. doi: 10.3390/ijms25042227.
3
Double-strand DNA break repair: molecular mechanisms and therapeutic targets.
MedComm (2020). 2023 Oct 5;4(5):e388. doi: 10.1002/mco2.388. eCollection 2023 Oct.
4
MRE11:p.K464R mutation mediates olaparib resistance by enhancing DNA damage repair in HGSOC.
Cell Biosci. 2023 Sep 27;13(1):178. doi: 10.1186/s13578-023-01117-0.
6
DNA Repair in Haploid Context.
Int J Mol Sci. 2021 Nov 17;22(22):12418. doi: 10.3390/ijms222212418.
7
Autophosphorylation and Self-Activation of DNA-Dependent Protein Kinase.
Genes (Basel). 2021 Jul 19;12(7):1091. doi: 10.3390/genes12071091.
8
Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers.
Transl Oncol. 2021 Mar;14(3):101012. doi: 10.1016/j.tranon.2021.101012. Epub 2021 Jan 27.
10
MRN complex is an essential effector of DNA damage repair.
J Zhejiang Univ Sci B. 2021 Jan 15;22(1):31-37. doi: 10.1631/jzus.B2000289.

本文引用的文献

1
Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection.
Mol Cell. 2014 Jun 19;54(6):1022-1033. doi: 10.1016/j.molcel.2014.04.011. Epub 2014 May 15.
2
CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity.
Mol Cell. 2014 Jun 19;54(6):1012-1021. doi: 10.1016/j.molcel.2014.04.012. Epub 2014 May 15.
3
DNA-PK: a dynamic enzyme in a versatile DSB repair pathway.
DNA Repair (Amst). 2014 May;17:21-9. doi: 10.1016/j.dnarep.2014.02.020. Epub 2014 Mar 27.
4
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
5
Integration profiling of gene function with dense maps of transposon integration.
Genetics. 2013 Oct;195(2):599-609. doi: 10.1534/genetics.113.152744. Epub 2013 Jul 26.
7
Repair of double-strand breaks by end joining.
Cold Spring Harb Perspect Biol. 2013 May 1;5(5):a012757. doi: 10.1101/cshperspect.a012757.
8
The fission yeast MRN complex tethers dysfunctional telomeres for NHEJ repair.
EMBO J. 2012 Dec 12;31(24):4576-86. doi: 10.1038/emboj.2012.313. Epub 2012 Nov 27.
9
When secondary comes first--the importance of non-canonical DNA structures.
Biochimie. 2013 Feb;95(2):117-23. doi: 10.1016/j.biochi.2012.10.005. Epub 2012 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验