Suppr超能文献

基于多期医学图像的局灶性肝脏病变检索的局部结构稀疏码本模型

Sparse Codebook Model of Local Structures for Retrieval of Focal Liver Lesions Using Multiphase Medical Images.

作者信息

Wang Jian, Han Xian-Hua, Xu Yingying, Lin Lanfen, Hu Hongjie, Jin Chongwu, Chen Yen-Wei

机构信息

Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan.

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.

出版信息

Int J Biomed Imaging. 2017;2017:1413297. doi: 10.1155/2017/1413297. Epub 2017 Feb 13.

Abstract

Characterization and individual trait analysis of the focal liver lesions (FLL) is a challenging task in medical image processing and clinical site. The character analysis of a unconfirmed FLL case would be expected to benefit greatly from the accumulated FLL cases with experts' analysis, which can be achieved by content-based medical image retrieval (CBMIR). CBMIR mainly includes discriminated feature extraction and similarity calculation procedures. Bag-of-Visual-Words (BoVW) (codebook-based model) has been proven to be effective for different classification and retrieval tasks. This study investigates an improved codebook model for the fined-grained medical image representation with the following three advantages: (1) instead of SIFT, we exploit the local patch (structure) as the local descriptor, which can retain all detailed information and is more suitable for the fine-grained medical image applications; (2) in order to more accurately approximate any local descriptor in coding procedure, the sparse coding method, instead of -means algorithm, is employed for codebook learning and coded vector calculation; (3) we evaluate retrieval performance of focal liver lesions (FLL) using multiphase computed tomography (CT) scans, in which the proposed codebook model is separately learned for each phase. The effectiveness of the proposed method is confirmed by our experiments on FLL retrieval.

摘要

在医学图像处理和临床领域,对肝脏局灶性病变(FLL)进行特征描述和个体特征分析是一项具有挑战性的任务。对于一个未经确诊的FLL病例,其特征分析有望从积累的FLL病例及专家分析中受益匪浅,这可以通过基于内容的医学图像检索(CBMIR)来实现。CBMIR主要包括鉴别特征提取和相似度计算过程。视觉词袋(BoVW)(基于码本的模型)已被证明在不同的分类和检索任务中是有效的。本研究探讨了一种改进的码本模型,用于细粒度医学图像表示,具有以下三个优点:(1)我们利用局部块(结构)作为局部描述符,而不是尺度不变特征变换(SIFT),它可以保留所有详细信息,更适合细粒度医学图像应用;(2)为了在编码过程中更准确地逼近任何局部描述符,采用稀疏编码方法而不是K均值算法进行码本学习和编码向量计算;(3)我们使用多期计算机断层扫描(CT)图像评估肝脏局灶性病变(FLL)的检索性能,其中针对每个阶段分别学习所提出的码本模型。我们在FLL检索实验中证实了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81e7/5331167/aaae5d601207/IJBI2017-1413297.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验