Diamant Idit, Hoogi Assaf, Beaulieu Christopher F, Safdari Mustafa, Klang Eyal, Amitai Michal, Greenspan Hayit, Rubin Daniel L
IEEE J Biomed Health Inform. 2016 Nov;20(6):1585-1594. doi: 10.1109/JBHI.2015.2478255. Epub 2015 Sep 11.
The bag-of-visual-words (BoVW) method with construction of a single dictionary of visual words has been used previously for a variety of classification tasks in medical imaging, including the diagnosis of liver lesions. In this paper, we describe a novel method for automated diagnosis of liver lesions in portal-phase computed tomography (CT) images that improves over single-dictionary BoVW methods by using an image patch representation of the interior and boundary regions of the lesions. Our approach captures characteristics of the lesion margin and of the lesion interior by creating two separate dictionaries for the margin and the interior regions of lesions ("dual dictionaries" of visual words). Based on these dictionaries, visual word histograms are generated for each region of interest within the lesion and its margin. For validation of our approach, we used two datasets from two different institutions, containing CT images of 194 liver lesions (61 cysts, 80 metastasis, and 53 hemangiomas). The final diagnosis of each lesion was established by radiologists. The classification accuracy for the images from the two institutions was 99% and 88%, respectively, and 93% for a combined dataset. Our new BoVW approach that uses dual dictionaries shows promising results. We believe the benefits of our approach may generalize to other application domains within radiology.
具有构建单个视觉单词字典的视觉单词包(BoVW)方法此前已用于医学成像中的各种分类任务,包括肝脏病变的诊断。在本文中,我们描述了一种用于门静脉期计算机断层扫描(CT)图像中肝脏病变自动诊断的新方法,该方法通过使用病变内部和边界区域的图像块表示来改进单字典BoVW方法。我们的方法通过为病变的边缘和内部区域创建两个单独的字典(视觉单词的“双字典”)来捕捉病变边缘和病变内部的特征。基于这些字典,为病变及其边缘内的每个感兴趣区域生成视觉单词直方图。为了验证我们的方法,我们使用了来自两个不同机构的两个数据集,其中包含194个肝脏病变的CT图像(61个囊肿、80个转移瘤和53个血管瘤)。每个病变的最终诊断由放射科医生确定。两个机构图像的分类准确率分别为99%和88%,合并数据集的分类准确率为93%。我们使用双字典的新BoVW方法显示出了有前景的结果。我们相信我们方法的优势可能会推广到放射学的其他应用领域。