Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Zürich, Switzerland.
Cartilage Engineering and Regeneration Laboratory, ETH Zürich, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4507-4511. doi: 10.1002/anie.201700196. Epub 2017 Mar 13.
Cyclic poly-2-ethyl-2-oxazoline (PEOXA) ligands for superparamagnetic Fe O nanoparticles (NPs) generate ultra-dense and highly compact shells, providing enhanced colloidal stability and bio-inertness in physiological media. When linear brush shells fail in providing colloidal stabilization to NPs, the cyclic ones assure long lasting dispersions. While the thermally induced dehydration of linear PEOXA shells cause irreversible aggregation of the NPs, the collapse and subsequent rehydration of similarly grafted cyclic brushes allow the full recovery of individually dispersed NPs. Although linear ligands are densely grafted onto Fe O cores, a small plasma protein such as bovine serum albumin (BSA) still physisorbs within their shells. In contrast, the impenetrable entropic shield provided by cyclic brushes efficiently prevents nonspecific interaction with proteins.
超顺磁 Fe3O4 纳米粒子(NPs)的环状聚 2-乙基-2-恶唑啉(PEOXA)配体生成超密集和高度紧凑的壳,在生理介质中提供增强的胶体稳定性和生物惰性。当线性刷状壳无法为 NPs 提供胶体稳定时,环状壳可确保长时间分散。虽然线性 PEOXA 壳的热诱导脱水会导致 NPs 的不可逆聚集,但类似接枝的环状刷的坍塌和随后的再水合允许完全恢复单独分散的 NPs。尽管线性配体密集地接枝到 Fe3O4 核上,但像牛血清白蛋白(BSA)这样的小血浆蛋白仍然在其壳内物理吸附。相比之下,环状刷提供的不可渗透的熵屏蔽有效地防止了与蛋白质的非特异性相互作用。