Suppr超能文献

微流控装置实现了定量延时显微摄影,用于表型分析大豆致病真菌平脐蠕孢菌的营养生长和繁殖生长阶段。

Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean.

机构信息

G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA.

2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA.

出版信息

Sci Rep. 2017 Mar 15;7:44365. doi: 10.1038/srep44365.

Abstract

Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.

摘要

延时显微摄影可深入研究微生物的表型。本文报道了一种使用微流控装置进行此类系统开发的方法,该装置由聚二甲基硅氧烷和玻璃载片制成,放置在显微镜的电动载物台上,可同时对 20 个通道进行延时显微摄影,实现多次观察。我们利用该装置研究了引起大豆猝死综合征的尖镰孢的生长、发芽和孢子形成,展示了该装置的实用性。为了测量生长差异,我们在该真菌中开发了一种多胺氧化酶 fvpo1 突变体,该突变体无法在含有多胺作为唯一氮源的最低培养基中生长。使用该系统,我们证明了病原菌的分生孢子平均需要五个小时才能发芽。在孢子形成过程中,分生孢子平均需要 10.5 小时才能第一次成熟并从其分生孢子梗上脱落。分生孢子一个接一个地在单个分生孢子梗上发育。本文报道的这种适合定量延时显微摄影的微流控装置,可用于筛选化合物、肽、微生物,以鉴定控制严重植物病原体的杀菌或抗菌剂。该装置还可用于鉴定用于引发作物中新型抗病性的病原体中宿主诱导基因沉默的合适靶基因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验