Furchtgott Leon A, Melton Samuel, Menon Vilas, Ramanathan Sharad
FAS Center for Systems Biology, Harvard University, Cambridge, United States.
Biophysics Program, Harvard University, Cambridge, United States.
Elife. 2017 Mar 15;6:e20488. doi: 10.7554/eLife.20488.
Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships.
通过计算分析基因表达来确定多能细胞所做出的谱系选择顺序,并识别影响这些决定的基因,这具有挑战性。在这里,我们在B细胞和T细胞发育谱系中的细胞类型之间发现了一小部分稀疏基因的表达水平模式,该模式与发育拓扑结构相关。我们利用这一模式开发了一个统计框架,以同时推断谱系转变和决定这些关系的基因。我们使用该技术重建早期造血和肠道发育树。我们扩展这个框架来分析来自人类早期皮质发育的单细胞RNA测序数据,推断早期祖细胞中的新皮质-后脑分裂以及可能控制这一谱系决定的关键基因。我们的工作使我们能够同时推断细胞类型的身份和谱系,以及一小部分关键基因,其表达模式反映了这些关系。