Jang Sumin, Choubey Sandeep, Furchtgott Leon, Zou Ling-Nan, Doyle Adele, Menon Vilas, Loew Ethan B, Krostag Anne-Rachel, Martinez Refugio A, Madisen Linda, Levi Boaz P, Ramanathan Sharad
FAS Center for Systems Biology, Harvard University, Cambridge, United States.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.
Elife. 2017 Mar 15;6:e20487. doi: 10.7554/eLife.20487.
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development.
导致多能细胞获得不同细胞命运的基因调控网络的复杂性,使得对分化进行定量理解具有挑战性。我们使用一个统计框架来分析单细胞转录组学数据,推断早期小鼠胚胎干细胞(mES)分化过程中的基因表达动态,揭示了跨越九个细胞状态的离散转变。我们使用流式细胞术验证了跨离散状态的预测转变。此外,通过活细胞显微镜观察,我们发现单个细胞会从幼稚多能状态突然转变为始发态多能状态。利用推断出的离散细胞状态构建潜在基因调控网络的概率模型,我们进一步预测并通过实验验证了这些状态对扰动具有独特的反应,从而在功能上对它们进行了定义。我们的研究提供了一个框架,用于从单细胞转录组学数据推断分化动态,并构建驱动发育过程中细胞命运决定序列的基因调控网络的预测模型。