Beijing International Center for Mathematical Research, Peking University, Beijing, China.
Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
Sci Rep. 2024 May 29;14(1):12355. doi: 10.1038/s41598-024-62850-1.
Time-stamped cross-sectional data, which lack linkage across time points, are commonly generated in single-cell transcriptional profiling. Many previous methods for inferring gene regulatory networks (GRNs) driving cell-state transitions relied on constructing single-cell temporal ordering. Introducing COSLIR (COvariance restricted Sparse LInear Regression), we presented a direct approach to reconstructing GRNs that govern cell-state transitions, utilizing only the first and second moments of samples between two consecutive time points. Simulations validated COSLIR's perfect accuracy in the oracle case and demonstrated its robust performance in real-world scenarios. When applied to single-cell RT-PCR and RNAseq datasets in developmental biology, COSLIR competed favorably with existing methods. Notably, its running time remained nearly independent of the number of cells. Therefore, COSLIR emerges as a promising addition to GRN reconstruction methods under cell-state transitions, bypassing the single-cell temporal ordering to enhance accuracy and efficiency in single-cell transcriptional profiling.
时间戳横截面数据在单细胞转录组学中经常生成,这些数据缺乏时间点之间的关联。许多先前用于推断驱动细胞状态转变的基因调控网络 (GRN) 的方法依赖于构建单细胞时间顺序。我们引入了 COSLIR(协方差约束稀疏线性回归),提出了一种仅利用两个连续时间点之间的样本的一阶和二阶矩来重建控制细胞状态转变的 GRN 的直接方法。模拟验证了 COSLIR 在 oracle 情况下的完美准确性,并在实际情况下展示了其强大的性能。当应用于发育生物学中的单细胞 RT-PCR 和 RNAseq 数据集时,COSLIR 与现有方法竞争激烈。值得注意的是,它的运行时间几乎与细胞数量无关。因此,COSLIR 作为一种有前途的方法添加到细胞状态转变下的 GRN 重建方法中,绕过单细胞时间顺序,以提高单细胞转录组学中的准确性和效率。