Suppr超能文献

对分歧归一化对噪声相关性的多种影响进行建模。

Modeling the diverse effects of divisive normalization on noise correlations.

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America.

出版信息

PLoS Comput Biol. 2023 Nov 30;19(11):e1011667. doi: 10.1371/journal.pcbi.1011667. eCollection 2023 Nov.

Abstract

Divisive normalization, a prominent descriptive model of neural activity, is employed by theories of neural coding across many different brain areas. Yet, the relationship between normalization and the statistics of neural responses beyond single neurons remains largely unexplored. Here we focus on noise correlations, a widely studied pairwise statistic, because its stimulus and state dependence plays a central role in neural coding. Existing models of covariability typically ignore normalization despite empirical evidence suggesting it affects correlation structure in neural populations. We therefore propose a pairwise stochastic divisive normalization model that accounts for the effects of normalization and other factors on covariability. We first show that normalization modulates noise correlations in qualitatively different ways depending on whether normalization is shared between neurons, and we discuss how to infer when normalization signals are shared. We then apply our model to calcium imaging data from mouse primary visual cortex (V1), and find that it accurately fits the data, often outperforming a popular alternative model of correlations. Our analysis indicates that normalization signals are often shared between V1 neurons in this dataset. Our model will enable quantifying the relation between normalization and covariability in a broad range of neural systems, which could provide new constraints on circuit mechanisms of normalization and their role in information transmission and representation.

摘要

有区分性的正规化(Divisive normalization)是一个突出的神经活动描述模型,被许多不同脑区的神经编码理论所采用。然而,正规化与超越单个神经元的神经反应统计之间的关系在很大程度上仍未得到探索。在这里,我们专注于噪声相关,这是一种广泛研究的成对统计量,因为其刺激和状态依赖性在神经编码中起着核心作用。现有的协变量模型通常忽略了正规化,尽管有经验证据表明它会影响神经群体中的相关结构。因此,我们提出了一种成对的随机有区分性正规化模型,该模型考虑了正规化和其他因素对协变量的影响。我们首先表明,正规化根据神经元之间是否共享正规化,以定性不同的方式调节噪声相关,我们讨论了如何推断何时共享正规化信号。然后,我们将我们的模型应用于来自小鼠初级视觉皮层(V1)的钙成像数据,并发现它能够准确地拟合数据,通常比相关的流行替代模型表现更好。我们的分析表明,在这个数据集的 V1 神经元之间,正规化信号通常是共享的。我们的模型将能够量化正规化和协变量之间的关系在广泛的神经系统中,这可以为正规化的电路机制及其在信息传输和表示中的作用提供新的约束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba65/10715670/06d9b03b897c/pcbi.1011667.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验