Place Skyler, Blanch-Hartigan Danielle, Rubin Channah, Gorrostieta Cristina, Mead Caroline, Kane John, Marx Brian P, Feast Joshua, Deckersbach Thilo, Pentland Alex Sandy, Nierenberg Andrew, Azarbayejani Ali
Cogito Corporation, Boston, MA, United States.
Department of Natural and Applied Sciences, Bentley University, Waltham, MA, United States.
J Med Internet Res. 2017 Mar 16;19(3):e75. doi: 10.2196/jmir.6678.
There is a critical need for real-time tracking of behavioral indicators of mental disorders. Mobile sensing platforms that objectively and noninvasively collect, store, and analyze behavioral indicators have not yet been clinically validated or scalable.
The aim of our study was to report on models of clinical symptoms for post-traumatic stress disorder (PTSD) and depression derived from a scalable mobile sensing platform.
A total of 73 participants (67% [49/73] male, 48% [35/73] non-Hispanic white, 33% [24/73] veteran status) who reported at least one symptom of PTSD or depression completed a 12-week field trial. Behavioral indicators were collected through the noninvasive mobile sensing platform on participants' mobile phones. Clinical symptoms were measured through validated clinical interviews with a licensed clinical social worker. A combination hypothesis and data-driven approach was used to derive key features for modeling symptoms, including the sum of outgoing calls, count of unique numbers texted, absolute distance traveled, dynamic variation of the voice, speaking rate, and voice quality. Participants also reported ease of use and data sharing concerns.
Behavioral indicators predicted clinically assessed symptoms of depression and PTSD (cross-validated area under the curve [AUC] for depressed mood=.74, fatigue=.56, interest in activities=.75, and social connectedness=.83). Participants reported comfort sharing individual data with physicians (Mean 3.08, SD 1.22), mental health providers (Mean 3.25, SD 1.39), and medical researchers (Mean 3.03, SD 1.36).
Behavioral indicators passively collected through a mobile sensing platform predicted symptoms of depression and PTSD. The use of mobile sensing platforms can provide clinically validated behavioral indicators in real time; however, further validation of these models and this platform in large clinical samples is needed.
对精神障碍行为指标进行实时追踪的需求极为迫切。能够客观、非侵入性地收集、存储和分析行为指标的移动传感平台尚未经过临床验证,也不具备可扩展性。
我们研究的目的是报告源自可扩展移动传感平台的创伤后应激障碍(PTSD)和抑郁症临床症状模型。
共有73名报告至少有一项PTSD或抑郁症症状的参与者(67%[49/73]为男性,48%[35/73]为非西班牙裔白人,33%[24/73]有退伍军人身份)完成了一项为期12周的现场试验。通过参与者手机上的非侵入性移动传感平台收集行为指标。通过与持牌临床社会工作者进行的经验证的临床访谈来测量临床症状。采用假设与数据驱动相结合的方法来推导用于症状建模的关键特征,包括呼出电话总数、发送短信的唯一号码数量、行进的绝对距离、语音的动态变化、说话速度和语音质量。参与者还报告了使用便利性和数据共享方面的担忧。
行为指标可预测经临床评估的抑郁症和PTSD症状(抑郁情绪的交叉验证曲线下面积[AUC]=0.74,疲劳=0.56,活动兴趣=0.75,社交联系=0.83)。参与者报告称愿意与医生(平均3.08,标准差1.22)、心理健康服务提供者(平均3.25,标准差1.39)和医学研究人员(平均3.03,标准差1.36)分享个人数据。
通过移动传感平台被动收集的行为指标可预测抑郁症和PTSD症状。使用移动传感平台可实时提供经过临床验证的行为指标;然而,需要在大型临床样本中对这些模型和该平台进行进一步验证。