Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Institute of Chemical Sciences and Engineering, School of Basic Science, EPFL, CH-1015 Lausanne, Switzerland.
Sci Rep. 2017 Mar 17;7:44711. doi: 10.1038/srep44711.
The combination of microfluidics with engineered three-dimensional (3D) matrices can bring new insights into the fate regulation of stem cells and their self-organization into organoids. Although there has been progress in 3D stem cell culturing, most existing in vitro methodologies do not allow for mimicking of the spatiotemporal heterogeneity of stimuli that drive morphogenetic processes in vivo. To address this, we present a perfusion-free microchip concept for the in vitro 3D perturbation of stem cell fate. Stem cells are encapsulated in a hydrogel compartment that is flanked by open reservoirs for the diffusion-driven generation of biomolecule gradients. Juxtaposing additional compartments bearing supportive cells enables investigating the influence of long range cell-cell communication. We explore the utility of the microchips in manipulating early fate choices and self-organizing characteristics of 3D-cultured mouse embryonic stem cells (mESCs) under neural differentiation conditions and exposure to gradients of leukemia inhibitory factor (LIF). mESCs respond to LIF gradients in a spatially dependent manner. At higher LIF concentrations, multicellular colonies maintain pluripotency in contrast, at lower concentrations, mESCs develop into apicobasally polarized epithelial cysts. This versatile system can help to systematically explore the role of multifactorial microenvironments in promoting self-patterning of various stem cell types.
微流控技术与工程化的三维(3D)基质相结合,可以为干细胞的命运调控及其自我组织为类器官提供新的见解。尽管在 3D 干细胞培养方面已经取得了进展,但大多数现有的体外方法都无法模拟体内形态发生过程中驱动形态发生的刺激的时空异质性。为了解决这个问题,我们提出了一种无灌注微芯片概念,用于体外 3D 干细胞命运的扰动。干细胞被包封在水凝胶隔室中,该隔室由开放的储液器侧翼,用于扩散驱动的生物分子梯度的产生。并列带有支持细胞的附加隔室,可以研究长程细胞-细胞通讯的影响。我们探索了微芯片在操纵早期命运选择和在神经分化条件下以及暴露于白血病抑制因子(LIF)梯度下的 3D 培养的小鼠胚胎干细胞(mESC)的自我组织特征方面的效用。mESC 以空间依赖的方式对 LIF 梯度做出反应。在较高的 LIF 浓度下,多细胞集落保持多能性,相比之下,在较低的浓度下,mESC 发育成顶端-基底极化的上皮样囊肿。这个多功能系统可以帮助系统地探索多因素微环境在促进各种干细胞类型的自我模式形成中的作用。