Suppr超能文献

细菌的趋化反应策略。

Bacterial strategies for chemotaxis response.

机构信息

Institut Pasteur, Genomes and Genetics Department, Unit Physics of Biological Systems, Centre National de la Recherche Scientifique Unité de Recherche Associée 2171, F-75015 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1391-6. doi: 10.1073/pnas.0909673107. Epub 2010 Jan 4.

Abstract

Regular environmental conditions allow for the evolution of specifically adapted responses, whereas complex environments usually lead to conflicting requirements upon the organism's response. A relevant instance of these issues is bacterial chemotaxis, where the evolutionary and functional reasons for the experimentally observed response to chemoattractants remain a riddle. Sensing and motility requirements are in fact optimized by different responses, which strongly depend on the chemoattractant environmental profiles. It is not clear then how those conflicting requirements quantitatively combine and compromise in shaping the chemotaxis response. Here we show that the experimental bacterial response corresponds to the maximin strategy that ensures the highest minimum uptake of chemoattractants for any profile of concentration. We show that the maximin response is the unique one that always outcompetes motile but nonchemotactic bacteria. The maximin strategy is adapted to the variable environments experienced by bacteria, and we explicitly show its emergence in simulations of bacterial populations in a chemostat. Finally, we recast the contrast of evolution in regular vs. complex environments in terms of minimax vs. maximin game-theoretical strategies. Our results are generally relevant to biological optimization principles and provide a systematic possibility to get around the need to know precisely the statistics of environmental fluctuations.

摘要

常规环境条件允许特定适应性反应的进化,而复杂环境通常会对生物体的反应产生冲突的要求。这些问题的一个相关实例是细菌趋化性,实验观察到的对趋化剂的反应的进化和功能原因仍然是一个谜。实际上,感应和运动性要求是通过不同的反应来优化的,这些反应强烈依赖于趋化剂的环境分布。那么,这些相互冲突的要求如何在塑造趋化性反应时定量地结合和妥协,就不清楚了。在这里,我们表明实验细菌的反应对应于最大最小策略,该策略确保了在任何浓度分布的情况下对趋化剂的最高最小摄取。我们表明,最大最小反应是唯一一种总是胜过游动但非趋化性细菌的反应。最大最小策略适应于细菌所经历的变化环境,我们在恒化器中模拟细菌种群时明确显示了它的出现。最后,我们根据最小最大博弈论策略,重新表述了常规环境与复杂环境中的进化对比。我们的结果通常与生物优化原则有关,并为避免精确了解环境波动统计数据提供了一种系统的可能性。

相似文献

1
Bacterial strategies for chemotaxis response.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1391-6. doi: 10.1073/pnas.0909673107. Epub 2010 Jan 4.
2
Evolution of response dynamics underlying bacterial chemotaxis.
BMC Evol Biol. 2011 Aug 16;11:240. doi: 10.1186/1471-2148-11-240.
3
E. coli superdiffusion and chemotaxis-search strategy, precision, and motility.
Biophys J. 2009 Aug 19;97(4):946-57. doi: 10.1016/j.bpj.2009.04.065.
4
Adaptability of non-genetic diversity in bacterial chemotaxis.
Elife. 2014 Oct 3;3:e03526. doi: 10.7554/eLife.03526.
5
Evolution of chemotactic hitchhiking.
J Evol Biol. 2020 Nov;33(11):1593-1605. doi: 10.1111/jeb.13695. Epub 2020 Oct 11.
6
Investigations into the design principles in the chemotactic behavior of Escherichia coli.
Biosystems. 2008 Jan;91(1):171-82. doi: 10.1016/j.biosystems.2007.08.009. Epub 2007 Sep 4.
7
Design principles of a bacterial signalling network.
Nature. 2005 Nov 24;438(7067):504-7. doi: 10.1038/nature04228.
9
Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.
PLoS Comput Biol. 2008 May 23;4(5):e1000084. doi: 10.1371/journal.pcbi.1000084.
10

引用本文的文献

2
Coarse-graining bacterial diffusion in disordered media to surface states.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2407313122. doi: 10.1073/pnas.2407313122. Epub 2025 Mar 21.
3
Temporal Contrastive Learning through implicit non-equilibrium memory.
Nat Commun. 2025 Mar 4;16(1):2163. doi: 10.1038/s41467-025-57043-x.
4
Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2411074122. doi: 10.1073/pnas.2411074122. Epub 2025 Jan 10.
5
Walk this way: modeling foraging ant dynamics in multiple food source environments.
J Math Biol. 2024 Sep 12;89(4):41. doi: 10.1007/s00285-024-02136-2.
6
Chemotaxing do not count single molecules.
ArXiv. 2024 Nov 27:arXiv:2407.07264v2.
7
do not count single molecules.
bioRxiv. 2024 Jul 13:2024.07.09.602750. doi: 10.1101/2024.07.09.602750.
8
Learning optimal integration of spatial and temporal information in noisy chemotaxis.
PNAS Nexus. 2024 Jun 14;3(7):pgae235. doi: 10.1093/pnasnexus/pgae235. eCollection 2024 Jul.
9
Smart active particles learn and transcend bacterial foraging strategies.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2317618121. doi: 10.1073/pnas.2317618121. Epub 2024 Apr 1.
10
Harnessing synthetic active particles for physical reservoir computing.
Nat Commun. 2024 Jan 29;15(1):774. doi: 10.1038/s41467-024-44856-5.

本文引用的文献

1
MULTISCALE MODELS OF TAXIS-DRIVEN PATTERNING IN BACTERIAL POPULATIONS.
SIAM J Appl Math. 2009;70(1):133-169. doi: 10.1137/070711505.
2
Adaptive prediction of environmental changes by microorganisms.
Nature. 2009 Jul 9;460(7252):220-4. doi: 10.1038/nature08112. Epub 2009 Jun 17.
3
Bacterial tracking of motile algae assisted by algal cell's vorticity field.
Microb Ecol. 2009 Jul;58(1):63-74. doi: 10.1007/s00248-008-9468-6. Epub 2008 Dec 2.
4
Modeling the chemotactic response of Escherichia coli to time-varying stimuli.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60. doi: 10.1073/pnas.0807569105. Epub 2008 Sep 23.
5
Steady-state chemotaxis in Escherichia coli.
Phys Rev Lett. 2008 Jun 13;100(23):238101. doi: 10.1103/PhysRevLett.100.238101. Epub 2008 Jun 12.
6
Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.
PLoS Comput Biol. 2008 May 23;4(5):e1000084. doi: 10.1371/journal.pcbi.1000084.
7
The thermal impulse response of Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5373-7. doi: 10.1073/pnas.0709903105. Epub 2008 Apr 2.
8
Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev. 2008 Apr 1;22(7):945-53. doi: 10.1101/gad.1645008.
9
Stochastic switching as a survival strategy in fluctuating environments.
Nat Genet. 2008 Apr;40(4):471-5. doi: 10.1038/ng.110. Epub 2008 Mar 23.
10
Memory in microbes: quantifying history-dependent behavior in a bacterium.
PLoS One. 2008 Feb 27;3(2):e1700. doi: 10.1371/journal.pone.0001700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验