Micali Gabriele, Colin Rémy, Sourjik Victor, Endres Robert G
Department of Life Sciences, Imperial College, London, United Kingdom; Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom; Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology, Marburg, Germany.
Biophys J. 2017 Dec 5;113(11):2321-2325. doi: 10.1016/j.bpj.2017.09.031. Epub 2017 Oct 27.
Chemotaxis of the bacterium Escherichia coli is well understood in shallow chemical gradients, but its swimming behavior remains difficult to interpret in steep gradients. By focusing on single-cell trajectories from simulations, we investigated the dependence of the chemotactic drift velocity on attractant concentration in an exponential gradient. Whereas maxima of the average drift velocity can be interpreted within analytical linear-response theory of chemotaxis in shallow gradients, limits in drift due to steep gradients and finite number of receptor-methylation sites for adaptation go beyond perturbation theory. For instance, we found a surprising pinning of the cells to the concentration in the gradient at which cells run out of methylation sites. To validate the positions of maximal drift, we recorded single-cell trajectories in carefully designed chemical gradients using microfluidics.
大肠杆菌在浅化学梯度中的趋化作用已得到充分理解,但其在陡峭梯度中的游动行为仍难以解释。通过关注模拟中的单细胞轨迹,我们研究了指数梯度中趋化漂移速度对引诱剂浓度的依赖性。虽然平均漂移速度的最大值可以在浅梯度趋化的解析线性响应理论中得到解释,但由于陡峭梯度和用于适应的受体甲基化位点数量有限而导致的漂移限制超出了微扰理论。例如,我们发现细胞会惊人地固定在梯度中的某个浓度上,此时细胞耗尽了甲基化位点。为了验证最大漂移的位置,我们使用微流控技术在精心设计的化学梯度中记录了单细胞轨迹。