Suppr超能文献

营养感知与氧化应激反应

Nutrient Sensing and the Oxidative Stress Response.

作者信息

Luo Hanzhi, Chiang Hou-Hsien, Louw Makensie, Susanto Albert, Chen Danica

机构信息

Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.

Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA.

出版信息

Trends Endocrinol Metab. 2017 Jun;28(6):449-460. doi: 10.1016/j.tem.2017.02.008. Epub 2017 Mar 15.

Abstract

The simplicity and effectiveness of calorie restriction (CR) in lifespan and healthspan extension have fascinated generations searching for the Fountain of Youth. CR reduces levels of oxidative stress and damage, which have been postulated in the free radical theory of aging as a major cause of aging and diseases of aging. This reduction has long been viewed as a result of passive slowing of metabolism. Recent advances in nutrient sensing have provided molecular insights into the oxidative stress response and suggest that CR triggers an active defense program involving a cascade of molecular regulators to reduce oxidative stress. Physiological studies have provided strong support for oxidative stress in the development of aging-associated conditions and diseases but have also revealed the surprising requirement for oxidative stress to support normal physiological functions and, in some contexts, even slow aging and prevent the progression of cancer. Deciphering the molecular mechanisms and physiological implications of the oxidative stress response during CR will increase our understanding of the basic biology of aging and pave the way for the design of CR mimetics to improve healthspan.

摘要

热量限制(CR)在延长寿命和健康寿命方面的简单性和有效性,吸引了一代又一代寻找青春源泉的人。CR可降低氧化应激和损伤水平,自由基衰老理论认为这是衰老和衰老相关疾病的主要原因。长期以来,这种降低被视为新陈代谢被动减缓的结果。营养感知方面的最新进展为氧化应激反应提供了分子层面的见解,并表明CR触发了一个涉及一系列分子调节因子的主动防御程序,以降低氧化应激。生理学研究为氧化应激在衰老相关病症和疾病发展中的作用提供了有力支持,但也揭示了氧化应激对维持正常生理功能的惊人必要性,在某些情况下,甚至能延缓衰老并预防癌症进展。解读CR过程中氧化应激反应的分子机制和生理意义,将增进我们对衰老基础生物学的理解,并为设计CR模拟物以改善健康寿命铺平道路。

相似文献

1
Nutrient Sensing and the Oxidative Stress Response.
Trends Endocrinol Metab. 2017 Jun;28(6):449-460. doi: 10.1016/j.tem.2017.02.008. Epub 2017 Mar 15.
3
The roles of FoxOs in modulation of aging by calorie restriction.
Biogerontology. 2015 Feb;16(1):1-14. doi: 10.1007/s10522-014-9519-y. Epub 2014 Aug 22.
4
Calorie restriction and resveratrol supplementation prevent age-related DNA and RNA oxidative damage in a non-human primate.
Exp Gerontol. 2013 Sep;48(9):992-1000. doi: 10.1016/j.exger.2013.07.002. Epub 2013 Jul 13.
5
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation.
Cell Metab. 2010 Dec 1;12(6):662-7. doi: 10.1016/j.cmet.2010.11.015.
6
Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.
Mol Aspects Med. 2011 Aug;32(4-6):279-304. doi: 10.1016/j.mam.2011.10.007. Epub 2011 Oct 15.
7
The plasma membrane redox system in aging.
Ageing Res Rev. 2006 May;5(2):209-20. doi: 10.1016/j.arr.2006.03.005. Epub 2006 May 11.
8
Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging.
Arch Gerontol Geriatr. 2021 Jul-Aug;95:104413. doi: 10.1016/j.archger.2021.104413. Epub 2021 Apr 2.
10
Molecular mechanisms of calorie restriction's protection against age-related sclerosis.
IUBMB Life. 2006 Dec;58(12):695-702. doi: 10.1080/15216540601106365.

引用本文的文献

2
Diet-Modifiable Redox Alterations in Ageing and Cancer.
Subcell Biochem. 2024;107:129-172. doi: 10.1007/978-3-031-66768-8_7.
3
Antioxidant Potential of Exosomes in Animal Nutrition.
Antioxidants (Basel). 2024 Aug 8;13(8):964. doi: 10.3390/antiox13080964.
5
Engineering extracellular vesicles for ROS scavenging and tissue regeneration.
Nano Converg. 2024 Jun 26;11(1):24. doi: 10.1186/s40580-024-00430-9.
10
Metabolites and Immune Response in Tumor Microenvironments.
Cancers (Basel). 2023 Jul 31;15(15):3898. doi: 10.3390/cancers15153898.

本文引用的文献

1
Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages.
Cell. 2016 Oct 6;167(2):457-470.e13. doi: 10.1016/j.cell.2016.08.064. Epub 2016 Sep 22.
2
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
J Immunol. 2016 Oct 1;197(7):2864-79. doi: 10.4049/jimmunol.1600043. Epub 2016 Aug 26.
3
Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress.
mBio. 2016 Aug 9;7(4):e01238-16. doi: 10.1128/mBio.01238-16.
4
Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins.
Cell. 2016 Jun 30;166(1):140-51. doi: 10.1016/j.cell.2016.05.006. Epub 2016 Jun 2.
5
Repression of the Antioxidant NRF2 Pathway in Premature Aging.
Cell. 2016 Jun 2;165(6):1361-1374. doi: 10.1016/j.cell.2016.05.017.
6
Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
Nature. 2016 Apr 14;532(7598):255-8. doi: 10.1038/nature17393. Epub 2016 Apr 6.
7
sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance.
Nature. 2016 Apr 14;532(7598):250-4. doi: 10.1038/nature17392. Epub 2016 Apr 4.
8
The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.
Nature. 2016 Mar 24;531(7595):523-527. doi: 10.1038/nature17186. Epub 2016 Mar 16.
9
G6PD protects from oxidative damage and improves healthspan in mice.
Nat Commun. 2016 Mar 15;7:10894. doi: 10.1038/ncomms10894.
10
The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells.
Curr Opin Hematol. 2016 Jul;23(4):318-24. doi: 10.1097/MOH.0000000000000244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验