Suppr超能文献

一种使用联合功能和结构数据的静息态脑连接性的贝叶斯双融合模型。

A Bayesian Double Fusion Model for Resting-State Brain Connectivity Using Joint Functional and Structural Data.

作者信息

Kang Hakmook, Ombao Hernando, Fonnesbeck Christopher, Ding Zhaohua, Morgan Victoria L

机构信息

1 Department of Biostatistics, Vanderbilt University , Nashville, Tennessee.

2 Center for Quantitative Sciences, Vanderbilt University , Nashville, Tennessee.

出版信息

Brain Connect. 2017 May;7(4):219-227. doi: 10.1089/brain.2016.0447. Epub 2017 Apr 24.

Abstract

Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take advantage of the information from DTI that could potentially enhance estimation of resting-state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatiotemporal model that incorporates structural connectivity (SC) into estimating FC. In our proposed approach, SC based on DTI data is used to construct an informative prior for FC based on resting-state fMRI data through the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly reduced mean squared errors compared to the standard approach of separately analyzing the two data from different modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC between the brain regions that were hypothetically important in the origination and spread of temporal lobe epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is much robust to data decimation compared to the conventional approach.

摘要

当前的方法分别分析同时获取的扩散张量成像(DTI)和功能磁共振成像(fMRI)数据。这些方法的主要局限性在于它们没有利用来自DTI的信息,而这些信息可能会增强对脑区之间静息态功能连接(FC)的估计。为了克服这一局限性,我们开发了一种贝叶斯分层时空模型,该模型在估计FC时纳入了结构连接(SC)。在我们提出的方法中,基于DTI数据的SC通过Cholesky分解用于为基于静息态fMRI数据的FC构建信息先验。模拟研究表明,与分别分析来自不同模态的两种数据的标准方法相比,合并这两种数据可显著降低均方误差。我们应用我们的模型来分析收集到的静息态DTI和fMRI数据,以估计在颞叶癫痫发作的起源和传播中假设重要的脑区之间的FC。我们的分析得出结论,与传统方法相比,所提出的模型实现了更小的假阳性率,并且对数据抽取具有更强的鲁棒性。

相似文献

5
Structural-functional coupling changes in temporal lobe epilepsy.颞叶癫痫中的结构-功能耦合变化
Brain Res. 2015 Aug 7;1616:45-57. doi: 10.1016/j.brainres.2015.04.052. Epub 2015 May 8.
9
Time-dependence of graph theory metrics in functional connectivity analysis.功能连接性分析中图形理论指标的时间依赖性。
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.

引用本文的文献

3
TOPOLOGICAL LEARNING FOR BRAIN NETWORKS.脑网络的拓扑学习
Ann Appl Stat. 2023 Mar;17(1):403-433. doi: 10.1214/22-aoas1633. Epub 2023 Jan 24.
5
Group-level comparison of brain connectivity networks.脑连接网络的组水平比较。
BMC Med Res Methodol. 2022 Oct 17;22(1):273. doi: 10.1186/s12874-022-01712-8.
7
Topological Learning and Its Application to Multimodal Brain Network Integration.拓扑学习及其在多模态脑网络整合中的应用
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:166-176. doi: 10.1007/978-3-030-87196-3_16. Epub 2021 Sep 21.

本文引用的文献

2
A Mapping Between Structural and Functional Brain Networks.大脑结构网络与功能网络之间的映射
Brain Connect. 2016 May;6(4):298-311. doi: 10.1089/brain.2015.0408. Epub 2016 Mar 29.
7
Making Large-Scale Networks from fMRI Data.利用功能磁共振成像数据构建大规模网络
PLoS One. 2015 Sep 1;10(9):e0129074. doi: 10.1371/journal.pone.0129074. eCollection 2015.
8
Bayesian Models for fMRI Data Analysis.用于功能磁共振成像数据分析的贝叶斯模型。
Wiley Interdiscip Rev Comput Stat. 2015 Jan-Feb;7(1):21-41. doi: 10.1002/wics.1339.
10
Large-scale probabilistic functional modes from resting state fMRI.基于静息态功能磁共振成像的大规模概率性功能模式
Neuroimage. 2015 Apr 1;109:217-31. doi: 10.1016/j.neuroimage.2015.01.013. Epub 2015 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验