School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran.
PLoS One. 2023 Aug 18;18(8):e0289406. doi: 10.1371/journal.pone.0289406. eCollection 2023.
Neuroscientific studies aim to find an accurate and reliable brain Effective Connectome (EC). Although current EC discovery methods have contributed to our understanding of brain organization, their performances are severely constrained by the short sample size and poor temporal resolution of fMRI data, and high dimensionality of the brain connectome. By leveraging the DTI data as prior knowledge, we introduce two Bayesian causal discovery frameworks -the Bayesian GOLEM (BGOLEM) and Bayesian FGES (BFGES) methods- that offer significantly more accurate and reliable ECs and address the shortcomings of the existing causal discovery methods in discovering ECs based on only fMRI data. Moreover, to numerically assess the improvement in the accuracy of ECs with our method on empirical data, we introduce the Pseudo False Discovery Rate (PFDR) as a new computational accuracy metric for causal discovery in the brain. Through a series of simulation studies on synthetic and hybrid data (combining DTI from the Human Connectome Project (HCP) subjects and synthetic fMRI), we demonstrate the effectiveness of our proposed methods and the reliability of the introduced metric in discovering ECs. By employing the PFDR metric, we show that our Bayesian methods lead to significantly more accurate results compared to the traditional methods when applied to the Human Connectome Project (HCP) data. Additionally, we measure the reproducibility of discovered ECs using the Rogers-Tanimoto index for test-retest data and show that our Bayesian methods provide significantly more reliable ECs than traditional methods. Overall, our study's numerical and visual results highlight the potential for these frameworks to significantly advance our understanding of brain functionality.
神经科学研究旨在发现准确可靠的大脑有效连接组(EC)。虽然当前的 EC 发现方法有助于我们理解大脑组织,但它们的性能受到 fMRI 数据短样本量和低时间分辨率以及大脑连接组高维性的严重限制。通过利用 DTI 数据作为先验知识,我们引入了两种贝叶斯因果发现框架——贝叶斯 GOLEM(BGOLEM)和贝叶斯 FGES(BFGES)方法——它们提供了更准确、更可靠的 EC,并解决了现有基于 fMRI 数据发现 EC 的因果发现方法的缺点。此外,为了在经验数据上数值评估我们的方法对 EC 准确性的提高,我们引入了伪假发现率(PFDR)作为大脑因果发现的新计算准确性度量。通过对合成和混合数据(结合 HCP 受试者的 DTI 和合成 fMRI)的一系列模拟研究,我们展示了我们提出的方法的有效性和引入的度量在发现 EC 中的可靠性。通过使用 PFDR 度量,我们表明,与传统方法相比,我们的贝叶斯方法在应用于 HCP 数据时,会产生更准确的结果。此外,我们使用 Rogers-Tanimoto 指数测量测试-重测数据中发现的 EC 的可重复性,并表明我们的贝叶斯方法提供的 EC 比传统方法更可靠。总的来说,我们的研究的数值和可视化结果突出了这些框架在显著推进我们对大脑功能的理解方面的潜力。