Kook Jeong Hwan, Vaughn Kelly A, DeMaster Dana M, Ewing-Cobbs Linda, Vannucci Marina
Department of Statistics, Rice University, Houston, TX, 77005, USA.
Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center, Houston, TX, 77030, USA.
Neuroinformatics. 2021 Jan;19(1):39-56. doi: 10.1007/s12021-020-09472-w.
In this paper we propose BVAR-connect, a variational inference approach to a Bayesian multi-subject vector autoregressive (VAR) model for inference on effective brain connectivity based on resting-state functional MRI data. The modeling framework uses a Bayesian variable selection approach that flexibly integrates multi-modal data, in particular structural diffusion tensor imaging (DTI) data, into the prior construction. The variational inference approach we develop allows scalability of the methods and results in the ability to estimate subject- and group-level brain connectivity networks over whole-brain parcellations of the data. We provide a brief description of a user-friendly MATLAB GUI released for public use. We assess performance on simulated data, where we show that the proposed inference method can achieve comparable accuracy to the sampling-based Markov Chain Monte Carlo approach but at a much lower computational cost. We also address the case of subject groups with imbalanced sample sizes. Finally, we illustrate the methods on resting-state functional MRI and structural DTI data on children with a history of traumatic injury.
在本文中,我们提出了BVAR-connect,这是一种变分推理方法,用于基于静息态功能磁共振成像(fMRI)数据对贝叶斯多主体向量自回归(VAR)模型进行有效脑连接性推理。该建模框架使用贝叶斯变量选择方法,将多模态数据,特别是结构扩散张量成像(DTI)数据灵活地整合到先验构建中。我们开发的变分推理方法允许方法具有可扩展性,并能够在数据的全脑分割上估计主体和组水平的脑连接网络。我们简要描述了一个公开发布的用户友好型MATLAB图形用户界面(GUI)。我们在模拟数据上评估性能,结果表明所提出的推理方法能够达到与基于采样的马尔可夫链蒙特卡罗方法相当的准确性,但计算成本要低得多。我们还处理了样本量不平衡的主体组情况。最后,我们用有创伤性损伤史儿童的静息态功能磁共振成像和结构DTI数据说明了这些方法。