Suppr超能文献

用于稀疏张量图形模型的非凸统计优化

Non-convex Statistical Optimization for Sparse Tensor Graphical Model.

作者信息

Sun Wei, Wang Zhaoran, Liu Han, Cheng Guang

机构信息

Yahoo Labs, Sunnyvale, CA.

Department of Operations Research, and Financial Engineering, Princeton University, Princeton, NJ.

出版信息

Adv Neural Inf Process Syst. 2015;28:1081-1089.

Abstract

We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies.

摘要

我们考虑对稀疏图形模型进行估计,该模型刻画了高维张量值数据的依赖结构。为便于估计与张量的每种方式相对应的精度矩阵,我们假设数据服从协方差具有克罗内克积结构的张量正态分布。此模型的惩罚最大似然估计涉及最小化一个非凸目标函数。尽管该估计问题具有非凸性,但我们证明了一种交替最小化算法,即在固定其他矩阵的同时迭代估计每个稀疏精度矩阵,能得到具有最优统计收敛速率以及一致图恢复的估计器。值得注意的是,这样的估计器仅用一个张量样本就能实现估计一致性,这在先前的工作中是未被观察到的。我们的理论结果得到了全面数值研究的支持。

相似文献

1
Non-convex Statistical Optimization for Sparse Tensor Graphical Model.
Adv Neural Inf Process Syst. 2015;28:1081-1089.
2
Tensor Graphical Model: Non-Convex Optimization and Statistical Inference.
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2024-2037. doi: 10.1109/TPAMI.2019.2907679. Epub 2019 Mar 26.
4
Sparse PCA with Oracle Property.
Adv Neural Inf Process Syst. 2014;2014:1529-1537.
5
Alternating direction methods for latent variable gaussian graphical model selection.
Neural Comput. 2013 Aug;25(8):2172-98. doi: 10.1162/NECO_a_00379. Epub 2013 Apr 22.
6
Sparse estimation of a covariance matrix.
Biometrika. 2011 Dec;98(4):807-820. doi: 10.1093/biomet/asr054.
7
SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.
IEEE J Biomed Health Inform. 2017 Mar;21(2):573-581. doi: 10.1109/JBHI.2016.2515993. Epub 2016 Jan 8.
8
Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time.
Adv Neural Inf Process Syst. 2014;2014:3383-3391.
9
I-LAMM FOR SPARSE LEARNING: SIMULTANEOUS CONTROL OF ALGORITHMIC COMPLEXITY AND STATISTICAL ERROR.
Ann Stat. 2018 Apr;46(2):814-841. doi: 10.1214/17-AOS1568. Epub 2018 Apr 3.
10
Convex Banding of the Covariance Matrix.
J Am Stat Assoc. 2016;111(514):834-845. doi: 10.1080/01621459.2015.1058265. Epub 2016 Aug 18.

引用本文的文献

1
Artificial Intelligence for Classifying and Archiving Orthodontic Images.
Biomed Res Int. 2022 Jan 27;2022:1473977. doi: 10.1155/2022/1473977. eCollection 2022.

本文引用的文献

2
Sparse Estimation of Conditional Graphical Models With Application to Gene Networks.
J Am Stat Assoc. 2012 Jan 1;107(497):152-167. doi: 10.1080/01621459.2011.644498.
3
Model Selection and Estimation in the Matrix Normal Graphical Model.
J Multivar Anal. 2012 May 1;107:119-140. doi: 10.1016/j.jmva.2012.01.005.
4
NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES.
Ann Appl Stat. 2009 Jun 1;3(2):521-541. doi: 10.1214/08-AOAS215SUPP.
5
AGEMAP: a gene expression database for aging in mice.
PLoS Genet. 2007 Nov;3(11):e201. doi: 10.1371/journal.pgen.0030201. Epub 2007 Oct 2.
6
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验