Suppr超能文献

矩阵正态图形模型中的模型选择与估计

Model Selection and Estimation in the Matrix Normal Graphical Model.

作者信息

Yin Jianxin, Li Hongzhe

机构信息

School of Statistics, Renmin University of China, No. 59 Zhongguancun Street, Haidian District, Beijing 100872, China and Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6021, USA.

出版信息

J Multivar Anal. 2012 May 1;107:119-140. doi: 10.1016/j.jmva.2012.01.005.

Abstract

Motivated by analysis of gene expression data measured over different tissues or over time, we consider matrix-valued random variable and matrix-normal distribution, where the precision matrices have a graphical interpretation for genes and tissues, respectively. We present a l(1) penalized likelihood method and an efficient coordinate descent-based computational algorithm for model selection and estimation in such matrix normal graphical models (MNGMs). We provide theoretical results on the asymptotic distributions, the rates of convergence of the estimates and the sparsistency, allowing both the numbers of genes and tissues to diverge as the sample size goes to infinity. Simulation results demonstrate that the MNGMs can lead to better estimate of the precision matrices and better identifications of the graph structures than the standard Gaussian graphical models. We illustrate the methods with an analysis of mouse gene expression data measured over ten different tissues.

摘要

受对不同组织或不同时间测量的基因表达数据进行分析的启发,我们考虑矩阵值随机变量和矩阵正态分布,其中精度矩阵分别对基因和组织具有图形解释。我们提出了一种基于 l(1) 惩罚似然的方法和一种基于坐标下降的高效计算算法,用于此类矩阵正态图形模型(MNGM)中的模型选择和估计。我们给出了关于渐近分布、估计收敛速度和稀疏一致性的理论结果,允许基因数量和组织数量随着样本量趋于无穷而发散。模拟结果表明,与标准高斯图形模型相比,MNGM 能够对精度矩阵进行更好的估计,并能更好地识别图形结构。我们通过对在十个不同组织上测量的小鼠基因表达数据进行分析来说明这些方法。

相似文献

1
Model Selection and Estimation in the Matrix Normal Graphical Model.
J Multivar Anal. 2012 May 1;107:119-140. doi: 10.1016/j.jmva.2012.01.005.
2
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.
3
Robust Gaussian graphical modeling via l1 penalization.
Biometrics. 2012 Dec;68(4):1197-206. doi: 10.1111/j.1541-0420.2012.01785.x. Epub 2012 Sep 28.
4
Sparse Estimation of Conditional Graphical Models With Application to Gene Networks.
J Am Stat Assoc. 2012 Jan 1;107(497):152-167. doi: 10.1080/01621459.2011.644498.
5
A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL FOR ANALYSIS OF GENETICAL GENOMICS DATA.
Ann Appl Stat. 2011 Dec;5(4):2630-2650. doi: 10.1214/11-AOAS494.
6
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.
7
Adjusting for High-dimensional Covariates in Sparse Precision Matrix Estimation by ℓ-Penalization.
J Multivar Anal. 2013 Apr 1;116:365-381. doi: 10.1016/j.jmva.2013.01.005.
9
The graphical lasso: New insights and alternatives.
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
10
Non-convex Statistical Optimization for Sparse Tensor Graphical Model.
Adv Neural Inf Process Syst. 2015;28:1081-1089.

引用本文的文献

1
Optimal variable clustering for high-dimensional matrix valued data.
Inf inference. 2025 Mar 12;14(1):iaaf001. doi: 10.1093/imaiai/iaaf001. eCollection 2025 Mar.
2
Mode-wise principal subspace pursuit and matrix spiked covariance model.
J R Stat Soc Series B Stat Methodol. 2024 Sep 2;87(1):232-255. doi: 10.1093/jrsssb/qkae088. eCollection 2025 Feb.
3
Multivariate genome-wide association analysis by iterative hard thresholding.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad193.
4
Clustering of longitudinal interval-valued data via mixture distribution under covariance separability.
J Appl Stat. 2019 Nov 17;47(10):1739-1756. doi: 10.1080/02664763.2019.1692795. eCollection 2020.
5
Permutation based testing on covariance separability.
Comput Stat. 2019 Jun 1;34(2):865-883. doi: 10.1007/s00180-018-0839-2. Epub 2018 Sep 27.
7
Brain connectivity alteration detection via matrix-variate differential network model.
Biometrics. 2021 Dec;77(4):1409-1421. doi: 10.1111/biom.13359. Epub 2020 Sep 1.
8
Paired test of matrix graphs and brain connectivity analysis.
Biostatistics. 2021 Apr 10;22(2):402-420. doi: 10.1093/biostatistics/kxz037.
9
Multiple Matrix Gaussian Graphs Estimation.
J R Stat Soc Series B Stat Methodol. 2018 Nov;80(5):927-950. doi: 10.1111/rssb.12278. Epub 2018 Jun 14.
10
Non-convex Statistical Optimization for Sparse Tensor Graphical Model.
Adv Neural Inf Process Syst. 2015;28:1081-1089.

本文引用的文献

1
Inference with Transposable Data: Modeling the Effects of Row and Column Correlations.
J R Stat Soc Series B Stat Methodol. 2012 Sep;74(4):721-743. doi: 10.1111/j.1467-9868.2011.01027.x. Epub 2012 Mar 16.
2
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.
Ann Appl Stat. 2010 Jun;4(2):764-790. doi: 10.1214/09-AOAS314.
3
Bayesian analysis of matrix normal graphical models.
Biometrika. 2009 Dec;96(4):821-834. doi: 10.1093/biomet/asp049. Epub 2009 Oct 9.
4
NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES.
Ann Appl Stat. 2009 Jun 1;3(2):521-541. doi: 10.1214/08-AOAS215SUPP.
5
Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation.
Ann Stat. 2009;37(6B):4254-4278. doi: 10.1214/09-AOS720.
6
Are a set of microarrays independent of each other?
Ann Appl Stat. 2009 Jan 1;3(3):922-942. doi: 10.1214/09-AOAS236.
7
AGEMAP: a gene expression database for aging in mice.
PLoS Genet. 2007 Nov;3(11):e201. doi: 10.1371/journal.pgen.0030201. Epub 2007 Oct 2.
8
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
9
Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition.
Cell Signal. 2007 Oct;19(10):2003-12. doi: 10.1016/j.cellsig.2007.05.013. Epub 2007 Jun 12.
10
Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks.
Biostatistics. 2006 Apr;7(2):302-17. doi: 10.1093/biostatistics/kxj008. Epub 2005 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验