Zhang Jingjing, Friberg Ida M, Kift-Morgan Ann, Parekh Gita, Morgan Matt P, Liuzzi Anna Rita, Lin Chan-Yu, Donovan Kieron L, Colmont Chantal S, Morgan Peter H, Davis Paul, Weeks Ian, Fraser Donald J, Topley Nicholas, Eberl Matthias
Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK.
Kidney Int. 2017 Jul;92(1):179-191. doi: 10.1016/j.kint.2017.01.017. Epub 2017 Mar 17.
The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.
免疫系统已经进化到能够感知入侵的病原体、控制感染并恢复组织完整性。尽管患者存在症状差异,但缺乏明确证据表明个体的免疫系统能够区分不同的生物体并做出适当反应。我们在此采用系统方法,对83例急性腹膜炎就诊当天的腹膜透析患者对微生物学明确感染的反应进行了特征描述。在腹膜渗出液中测定了广泛的细胞和可溶性参数,涵盖了大多数局部免疫细胞、炎性和调节性细胞因子及趋化因子以及与组织损伤相关的因子。我们利用机器学习算法进行的分析表明,不同组别的细菌会诱导出质上不同的局部免疫特征,具有与革兰氏阴性菌和革兰氏阳性菌以及病因不明的培养阴性发作相关的特定生物标志物特征。甚至在革兰氏阳性菌组中,独特的免疫生物标志物组合也能识别出链球菌和非链球菌物种,包括凝固酶阴性葡萄球菌属。这些发现通过在护理点为患者管理和治疗选择提供信息,具有诊断和预后意义。因此,我们的数据确立了非线性数学模型分析复杂生物医学数据集的能力,并突出了病原体特异性免疫反应中涉及的关键途径。