Medina-Reyes Estefany I, Garcia-Viacobo Danae, Carrero-Martinez Franklin A, Chirino Yolanda Irasema
Laboratorio 10, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de México, CP 54090, Estado de México, México; Programa de Posgrado en Ciencias Biomédicas, Universidad Nacional Autonoma de México.
Laboratorio 10, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de México, CP 54090, Estado de México, México.
Crit Rev Ther Drug Carrier Syst. 2017;34(1):35-61. doi: 10.1615/CritRevTherDrugCarrierSyst.2017016983.
Recent advances in nanotechnology have transformed the biomedicine field, in which the use of engineered nanomaterials (ENMs) has provided the foundation for novel applications. For this reason, the number of ENMs has increased rapidly, and here we provide a classification of ENMs based on chemical composition and biomedical applications, which include regenerative medicine, delivery systems, theranostics, and therapy. These have been identified as the most advanced and promising areas for further studies with humans. In addition, we discuss possible side effects related to ENM uses. We identify carbon, metal, and metal oxides as the most versatile ENM material groups, used in bone and neuronal regenerative medicine, thermal therapy, theranostics, drug delivery, gene therapy, and biosensors. However, the majority of drugs approved by the U.S. Food and Drug Administration (FDA) are lipid-based ENMs. We conclude that biomedical applications of ENMs offer potential benefits while side effects are mainly associated with occupational exposure. Finally, we suggest that in the future, nanocomposites, subnanometric structures, and biodegradable and biocorona formation could be used to improve the biomedical field by focusing on infectious diseases, early detection, and precision medicine.
纳米技术的最新进展改变了生物医学领域,其中工程纳米材料(ENMs)的使用为新型应用奠定了基础。因此,ENMs的数量迅速增加,在此我们基于化学成分和生物医学应用对ENMs进行了分类,这些应用包括再生医学、递送系统、诊疗一体化以及治疗。这些已被确定为对人类进行进一步研究的最先进且最具前景的领域。此外,我们讨论了与ENMs使用相关的可能副作用。我们确定碳、金属和金属氧化物为最通用的ENM材料类别,用于骨和神经再生医学、热疗、诊疗一体化、药物递送、基因治疗以及生物传感器。然而,美国食品药品监督管理局(FDA)批准的大多数药物是基于脂质的ENMs。我们得出结论,ENMs的生物医学应用提供了潜在益处,而副作用主要与职业暴露相关。最后,我们建议未来可以通过关注传染病、早期检测和精准医学,利用纳米复合材料、亚纳米结构以及可生物降解和生物冠形成来改善生物医学领域。