Suppr超能文献

氧化铁纳米颗粒和铁基复合药物制剂的免疫效应:治疗益处、毒性、机制见解和转化考虑。

Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations.

机构信息

Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.

Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.

出版信息

Nanomedicine. 2018 Apr;14(3):977-990. doi: 10.1016/j.nano.2018.01.014. Epub 2018 Feb 2.

Abstract

Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.

摘要

纳米技术为药物输送提供了多种优势。然而,需要解决这些独特材料对健康产生潜在安全问题的关注。一些这样的影响可能是由于纳米颗粒与免疫系统之间的不良相互作用引起的,它们可能包括过敏反应、免疫抑制和免疫刺激。虽然目前的文献已经涵盖了研究各种工程纳米颗粒(包括金属氧化物)的免疫安全性的策略、模型和方法,但对氧化铁基纳米材料与免疫系统各种成分之间的相互作用关注甚少。在这里,我们全面回顾了研究氧化铁和铁基纳米粒子对各种类型免疫细胞的影响的研究,强调了目前对这些材料结构-活性关系理解的差距,并提出了一个框架来捕获它们的免疫毒性,以简化各种类型铁基配方之间的比较研究。

相似文献

2
Feraheme® suppresses immune function of human T lymphocytes through mitochondrial damage and mitoROS production.
Toxicol Appl Pharmacol. 2018 Jul 1;350:52-63. doi: 10.1016/j.taap.2018.04.028. Epub 2018 Apr 30.
3
Current understanding of interactions between nanoparticles and the immune system.
Toxicol Appl Pharmacol. 2016 May 15;299:78-89. doi: 10.1016/j.taap.2015.12.022. Epub 2015 Dec 29.
4
Safety assessment of chronic oral exposure to iron oxide nanoparticles.
Nanotechnology. 2015 May 22;26(20):205101. doi: 10.1088/0957-4484/26/20/205101. Epub 2015 Apr 30.
7
In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles.
Int J Mol Sci. 2015 Oct 15;16(10):24417-50. doi: 10.3390/ijms161024417.
8
Chemical design of biocompatible iron oxide nanoparticles for medical applications.
Small. 2013 May 27;9(9-10):1450-66. doi: 10.1002/smll.201202111. Epub 2012 Dec 11.
9
Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems.
J Pharm Sci. 2013 Nov;102(11):3867-82. doi: 10.1002/jps.23691. Epub 2013 Aug 23.
10
Applications and potential toxicity of magnetic iron oxide nanoparticles.
Small. 2013 May 27;9(9-10):1533-45. doi: 10.1002/smll.201201531. Epub 2012 Sep 28.

引用本文的文献

1
Natural carrier systems in cancer vaccines and immunotherapy.
Hum Vaccin Immunother. 2025 Dec;21(1):2535787. doi: 10.1080/21645515.2025.2535787. Epub 2025 Jul 24.
3
Morphometric effects of particulate air pollution on an optically trapped single red blood cell.
Sci Rep. 2025 May 8;15(1):16068. doi: 10.1038/s41598-025-00955-x.
4
Monocytes and parturition: Linking prolonged labor to immune dysregulation.
Medicine (Baltimore). 2025 Apr 25;104(17):e42351. doi: 10.1097/MD.0000000000042351.
6
Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles.
Front Immunol. 2024 Aug 15;15:1437430. doi: 10.3389/fimmu.2024.1437430. eCollection 2024.
7
Iron Oxide Nanoparticles as Promising Antibacterial Agents of New Generation.
Nanomaterials (Basel). 2024 Aug 3;14(15):1311. doi: 10.3390/nano14151311.
9
MRI-based microthrombi detection in stroke with polydopamine iron oxide.
Nat Commun. 2024 Jun 13;15(1):5070. doi: 10.1038/s41467-024-49480-x.
10
Blind Spots in Development of Nanomedicines.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241245342. doi: 10.1177/15330338241245342.

本文引用的文献

1
Nanoparticles in the clinic.
Bioeng Transl Med. 2016 Jun 3;1(1):10-29. doi: 10.1002/btm2.10003. eCollection 2016 Mar.
3
Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast.
Biomaterials. 2017 Jul;134:31-42. doi: 10.1016/j.biomaterials.2017.04.037. Epub 2017 Apr 22.
4
Nanoparticles for immune system targeting.
Drug Discov Today. 2017 Sep;22(9):1295-1301. doi: 10.1016/j.drudis.2017.03.013. Epub 2017 Apr 5.
5
Applications and Risks of Nanomaterials Used in Regenerative Medicine, Delivery Systems, Theranostics, and Therapy.
Crit Rev Ther Drug Carrier Syst. 2017;34(1):35-61. doi: 10.1615/CritRevTherDrugCarrierSyst.2017016983.
6
Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Nov;9(6). doi: 10.1002/wnan.1466. Epub 2017 Mar 16.
7
The antimicrobial activity of nanoparticles: present situation and prospects for the future.
Int J Nanomedicine. 2017 Feb 14;12:1227-1249. doi: 10.2147/IJN.S121956. eCollection 2017.
8
Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.
Biochim Biophys Acta Gen Subj. 2017 Jun;1861(6):1642-1651. doi: 10.1016/j.bbagen.2017.02.022. Epub 2017 Feb 20.
9
The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.
Nanoscale Res Lett. 2017 Dec;12(1):52. doi: 10.1186/s11671-017-1828-z. Epub 2017 Jan 19.
10
Relaxometric property of organosilica nanoparticles internally functionalized with iron oxide and fluorescent dye for multimodal imaging.
J Colloid Interface Sci. 2017 Apr 15;492:127-135. doi: 10.1016/j.jcis.2017.01.004. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验