Suppr超能文献

通过细胞间黏附的重塑生成组织拓扑结构。

Generating tissue topology through remodeling of cell-cell adhesions.

作者信息

Goodwin Katharine, Nelson Celeste M

机构信息

Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States.

Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.

出版信息

Exp Cell Res. 2017 Sep 1;358(1):45-51. doi: 10.1016/j.yexcr.2017.03.016. Epub 2017 Mar 18.

Abstract

During tissue morphogenesis, cellular rearrangements give rise to a large variety of three-dimensional structures. Final tissue architecture varies greatly across organs, and many develop to include combinations of folds, tubes, and branched networks. To achieve these different tissue geometries, constituent cells must follow different programs that dictate changes in shape and/or migratory behavior. One essential component of these changes is the remodeling of cell-cell adhesions. Invasive migratory behavior and separation between tissues require localized breakdown of cadherin-mediated adhesions. Conversely, tissue folding and fusion require the formation and reinforcement of cell-cell adhesions. Cell-cell adhesion plays a critical role in tissue morphogenesis; its manipulation may therefore prove to be invaluable in generating complex topologies ex vivo. Recapitulating these shapes in engineered tissues would enable a better understanding of how these processes occur in vivo, and may lead to improved design of organs for clinical applications. In this review, we discuss work investigating the formation of folds, tubes, and branched networks with an emphasis on known or possible roles for cell-cell adhesion. We then examine recently developed tools that could be adapted to manipulate cell-cell adhesion in engineered tissues.

摘要

在组织形态发生过程中,细胞重排产生了各种各样的三维结构。最终的组织结构在不同器官之间差异很大,许多器官发育成包括褶皱、管道和分支网络的组合。为了实现这些不同的组织几何形状,组成细胞必须遵循不同的程序,这些程序决定了形状和/或迁移行为的变化。这些变化的一个重要组成部分是细胞间粘附的重塑。侵袭性迁移行为和组织分离需要钙粘蛋白介导的粘附的局部破坏。相反,组织折叠和融合需要细胞间粘附的形成和加强。细胞间粘附在组织形态发生中起关键作用;因此,对其进行操控可能在体外生成复杂拓扑结构方面具有巨大价值。在工程组织中重现这些形状将有助于更好地理解这些过程在体内是如何发生的,并可能导致临床应用器官的设计改进。在这篇综述中,我们讨论了研究褶皱、管道和分支网络形成的工作,重点是细胞间粘附的已知或可能作用。然后,我们研究了最近开发的可用于操控工程组织中细胞间粘附的工具。

相似文献

1
Generating tissue topology through remodeling of cell-cell adhesions.
Exp Cell Res. 2017 Sep 1;358(1):45-51. doi: 10.1016/j.yexcr.2017.03.016. Epub 2017 Mar 18.
2
Cell adhesion: the molecular basis of tissue architecture and morphogenesis.
Cell. 1996 Feb 9;84(3):345-57. doi: 10.1016/s0092-8674(00)81279-9.
4
Regulation of cadherin-mediated adhesion in morphogenesis.
Nat Rev Mol Cell Biol. 2005 Aug;6(8):622-34. doi: 10.1038/nrm1699.
5
Force transduction by cadherin adhesions in morphogenesis.
F1000Res. 2019 Jul 10;8. doi: 10.12688/f1000research.18779.1. eCollection 2019.
6
Heterotypic control of basement membrane dynamics during branching morphogenesis.
Dev Biol. 2015 May 1;401(1):103-9. doi: 10.1016/j.ydbio.2014.12.011. Epub 2014 Dec 16.
7
Extracellular Matrix (ECM) and the Sculpting of Embryonic Tissues.
Curr Top Dev Biol. 2018;130:245-274. doi: 10.1016/bs.ctdb.2018.03.006.
8
Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis.
Int J Exp Pathol. 2019 Jun;100(3):144-152. doi: 10.1111/iep.12329. Epub 2019 Jun 10.
9
Traction forces exerted through N-cadherin contacts.
Biol Cell. 2006 Dec;98(12):721-30. doi: 10.1042/BC20060039.
10
Tissue mechanics and adhesion during embryo development.
Dev Biol. 2015 May 1;401(1):152-64. doi: 10.1016/j.ydbio.2014.12.005. Epub 2014 Dec 12.

引用本文的文献

1
Transcriptomic analysis reveal the responses of dendritic cells to VDBP.
Genes Genomics. 2022 Oct;44(10):1271-1282. doi: 10.1007/s13258-022-01234-z. Epub 2022 Mar 12.
2
The extracellular matrix in development.
Development. 2020 May 28;147(10):dev175596. doi: 10.1242/dev.175596.
4
Modeling branching morphogenesis using materials with programmable mechanical instabilities.
Curr Opin Biomed Eng. 2018 Jun;6:66-73. doi: 10.1016/j.cobme.2018.03.007. Epub 2018 Apr 4.
5
Scutoids are a geometrical solution to three-dimensional packing of epithelia.
Nat Commun. 2018 Jul 27;9(1):2960. doi: 10.1038/s41467-018-05376-1.
6
Secret handshakes: cell-cell interactions and cellular mimics.
Curr Opin Cell Biol. 2018 Feb;50:14-19. doi: 10.1016/j.ceb.2018.01.001. Epub 2018 Feb 6.

本文引用的文献

1
Designer matrices for intestinal stem cell and organoid culture.
Nature. 2016 Nov 24;539(7630):560-564. doi: 10.1038/nature20168. Epub 2016 Nov 16.
2
Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells.
Nat Cell Biol. 2016 Dec;18(12):1311-1323. doi: 10.1038/ncb3438. Epub 2016 Nov 14.
5
Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct.
Biophys J. 2016 Aug 9;111(3):650-665. doi: 10.1016/j.bpj.2016.06.032.
6
Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding.
Integr Biol (Camb). 2016 Sep 12;8(9):918-28. doi: 10.1039/c6ib00046k. Epub 2016 Aug 1.
7
VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation.
Mol Biol Cell. 2016 Sep 15;27(18):2811-21. doi: 10.1091/mbc.E16-02-0127. Epub 2016 Jul 27.
8
9
Shape Transformations of Epithelial Shells.
Biophys J. 2016 Apr 12;110(7):1670-1678. doi: 10.1016/j.bpj.2016.03.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验