Suppr超能文献

从电子健康记录中自动检测手术部位感染时处理缺失临床数据的策略。

Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record.

作者信息

Hu Zhen, Melton Genevieve B, Arsoniadis Elliot G, Wang Yan, Kwaan Mary R, Simon Gyorgy J

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA; Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Biomed Inform. 2017 Apr;68:112-120. doi: 10.1016/j.jbi.2017.03.009. Epub 2017 Mar 16.

Abstract

Proper handling of missing data is important for many secondary uses of electronic health record (EHR) data. Data imputation methods can be used to handle missing data, but their use for analyzing EHR data is limited and specific efficacy for postoperative complication detection is unclear. Several data imputation methods were used to develop data models for automated detection of three types (i.e., superficial, deep, and organ space) of surgical site infection (SSI) and overall SSI using American College of Surgeons National Surgical Quality Improvement Project (NSQIP) Registry 30-day SSI occurrence data as a reference standard. Overall, models with missing data imputation almost always outperformed reference models without imputation that included only cases with complete data for detection of SSI overall achieving very good average area under the curve values. Missing data imputation appears to be an effective means for improving postoperative SSI detection using EHR clinical data.

摘要

正确处理缺失数据对于电子健康记录(EHR)数据的许多二次使用都很重要。数据插补方法可用于处理缺失数据,但其在分析EHR数据方面的应用有限,且对术后并发症检测的具体疗效尚不清楚。使用几种数据插补方法,以美国外科医师学会国家外科质量改进项目(NSQIP)登记处30天手术部位感染(SSI)发生数据作为参考标准,开发用于自动检测三种类型(即浅表、深部和器官腔隙)手术部位感染及总体SSI的数据模型。总体而言,使用缺失数据插补的模型几乎总是优于仅包含完整数据病例的未插补参考模型,在检测总体SSI方面实现了非常好的平均曲线下面积值。缺失数据插补似乎是一种利用EHR临床数据改善术后SSI检测的有效手段。

相似文献

7
Novel Data Imputation for Multiple Types of Missing Data in Intensive Care Units.新型数据插补方法可用于 ICU 中多种类型的缺失数据。
IEEE J Biomed Health Inform. 2019 May;23(3):1243-1250. doi: 10.1109/JBHI.2018.2883606. Epub 2019 Apr 16.
9
Identification of surgical site infections using electronic health record data.利用电子健康记录数据识别手术部位感染。
Am J Infect Control. 2018 Nov;46(11):1230-1235. doi: 10.1016/j.ajic.2018.05.011. Epub 2018 Jun 12.

引用本文的文献

4
On operational definitions of mortality.论死亡率的操作定义。
Kidney Res Clin Pract. 2024 Mar;43(2):131-132. doi: 10.23876/j.krcp.23.228. Epub 2024 Feb 19.
10
Increasing efficiency of SVMp+ for handling missing values in healthcare prediction.提高SVMp+在医疗保健预测中处理缺失值的效率。
PLOS Digit Health. 2023 Jun 29;2(6):e0000281. doi: 10.1371/journal.pdig.0000281. eCollection 2023 Jun.

本文引用的文献

7
Compass: a hybrid method for clinical and biobank data mining.
J Biomed Inform. 2014 Feb;47:160-70. doi: 10.1016/j.jbi.2013.10.007. Epub 2013 Oct 26.
9
The prevention and handling of the missing data.数据缺失的预防和处理。
Korean J Anesthesiol. 2013 May;64(5):402-6. doi: 10.4097/kjae.2013.64.5.402. Epub 2013 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验