Suppr超能文献

基于千伏级投影图像的弧形治疗中 3D 实时肺部肿瘤跟踪的优化算法。

An optimization algorithm for 3D real-time lung tumor tracking during arc therapy using kV projection images.

机构信息

Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073.

出版信息

Med Phys. 2013 Oct;40(10):101710. doi: 10.1118/1.4821545.

Abstract

PURPOSE

To develop a real-time markerless 3D tumor tracking using kilovoltage (kV) cone-beam CT (CBCT) projection images during volumetric modulated arc therapy (VMAT) treatment of lung tumors.

METHODS

The authors have developed a method to identify the position of lung tumors during VMAT treatment, where the current mean 3D position is detected and subsequently the real time 3D position is obtained. The mean position is evaluated by iteratively minimizing an observation error function between the tumor coordinate detected in the imaging plane and the coordinate of the corresponding projection of the estimated mean position. The 3D trajectory is reconstructed using the same optimization formalism, where an observation error function is minimized for tumor positions confined within a predefined amplitude bin as determined from the superior-inferior tumor motion. Dynamic phantom experiments were performed and image data acquired during patient treatment were analyzed to characterize the reconstruction ability of the proposed method.

RESULTS

The proposed algorithm needs to acquire kV projection data until a certain gantry angle is passed through, termed the black-out angle, before accurate estimation mean 3D tumor position is possible. The black-out angle for the mean position method is approximately 20°, while for the 3D trajectory reconstruction an additional ≈ 15° is required. The mean 3D position and 3D trajectory reconstruction are accurate within ± 0.5 mm.

CONCLUSIONS

The authors present a real-time tracking framework to locate lung tumors during VMAT treatment using an optimization algorithm applied to CBCT kV projection images taken concomitantly with the treatment delivery. The authors' technique does not introduce significant additional dose and can be used for real-time treatment monitoring.

摘要

目的

开发一种使用千伏 (kV) 锥形束 CT (CBCT) 投影图像在容积调强弧形治疗 (VMAT) 治疗肺肿瘤期间进行实时无标记 3D 肿瘤跟踪的方法。

方法

作者开发了一种在 VMAT 治疗期间识别肺肿瘤位置的方法,其中检测当前平均 3D 位置,然后获得实时 3D 位置。平均位置通过在成像平面中检测到的肿瘤坐标与估计平均位置的相应投影坐标之间的观测误差函数迭代最小化来评估。使用相同的优化公式重建 3D 轨迹,其中在肿瘤运动的上-下方向上确定的预定义幅度范围内的肿瘤位置的观测误差函数最小化。进行了动态体模实验,并分析了患者治疗期间采集的图像数据,以表征所提出方法的重建能力。

结果

所提出的算法需要在能够准确估计平均 3D 肿瘤位置之前获取 kV 投影数据,直到通过一定的旋转角度,称为“黑屏角度”。对于平均位置方法,黑屏角度约为 20°,而对于 3D 轨迹重建,则需要额外的约 15°。平均 3D 位置和 3D 轨迹重建的精度在 ± 0.5 毫米以内。

结论

作者提出了一种使用优化算法在 VMAT 治疗期间定位肺肿瘤的实时跟踪框架,该算法应用于与治疗输送同时采集的 CBCT kV 投影图像。作者的技术不会引入显著的额外剂量,可用于实时治疗监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验