Suppr超能文献

基于脑连接性的长途客车司机脑电图特征分析揭示了一个图论网络。

EEG characteristic analysis of coach bus drivers based on brain connectivity as revealed a graph theoretical network.

作者信息

Wang Fuwang, Zhang Xiaolei, Fu Rongrong, Sun Guangbin

机构信息

School of Mechanic Engineering, Northeast Electric Power University Jilin 132012 China

College of Electrical Engineering, Yanshan University Qinhuangdao 066004 China.

出版信息

RSC Adv. 2018 Aug 23;8(52):29745-29755. doi: 10.1039/c8ra04846k. eCollection 2018 Aug 20.

Abstract

This study describes the detection of driving fatigue using the characteristics of brain networks in a real driving environment. First, the , and 36-44 Hz rhythm from the EEG signals of drivers were extracted using wavelet packet decomposition (WPD). The correlation between EEG channels was calculated using a Pearson correlation coefficient and subsequently, the brain networks were built. Furthermore, the clustering coefficient () and global efficiency () of the complex brain networks were calculated to analyze the functional differences in the brains of drivers over time. Combined with the relative power spectrum ratio () of EEG signals and the mean value from questionnaires, the correlation of data characteristics between brain networks and subjective and objective data was analyzed. The results show that changes in the fatigue state of drivers can be effectively detected by calculating the data characteristics of brain networks in a real driving environment.

摘要

本研究描述了在实际驾驶环境中利用脑网络特征检测驾驶疲劳的方法。首先,使用小波包分解(WPD)从驾驶员的脑电图(EEG)信号中提取了 、 和 36 - 44Hz 节律。使用皮尔逊相关系数计算 EEG 通道之间的相关性,随后构建脑网络。此外,计算复杂脑网络的聚类系数()和全局效率(),以分析驾驶员大脑功能随时间的差异。结合 EEG 信号的相对功率谱比()和问卷平均值,分析了脑网络数据特征与主观和客观数据之间的相关性。结果表明,通过计算实际驾驶环境中脑网络的数据特征,可以有效地检测驾驶员疲劳状态的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16dc/9085270/61633a58b1d8/c8ra04846k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验