Department of Mechanical Engineering and ‡Materials Science and Engineering Graduate Program, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11356-11362. doi: 10.1021/acsami.7b01538. Epub 2017 Mar 23.
The performance of BiVO photoanodes, especially under front-side illumination, is limited by the modest charge transport properties of BiVO. Core/shell nanostructures consisting of BiVO coated onto a conductive scaffold are a promising route to improving the performance of BiVO-based photoanodes. Here, we investigate photoanodes composed of thin and uniform layers of BiVO particles coated onto Sb-doped SnO (Sb:SnO) nanotube arrays that were synthesized using a sacrificial ZnO template with controllable length and packing density. We demonstrate a new record for the product of light absorption and charge separation efficiencies (η × η) of ∼57.3 and 58.5% under front- and back-side illumination, respectively, at 0.6 V. Moreover, both of these high η × η efficiencies are achieved without any extra treatment or intentional doping in BiVO These results indicate that integration of Sb:SnO nanotube cores with other successful strategies such as doping and hydrogen treatment can increase the performance of BiVO and related semiconductors closer to their theoretical potential.
BIVO 光阳极的性能,特别是在正面照明下,受到 BIVO 电荷输运性能的限制。由 BIVO 涂覆在导电支架上组成的核/壳纳米结构是提高基于 BIVO 光阳极性能的一种很有前途的方法。在这里,我们研究了由涂覆在 Sb 掺杂 SnO(Sb:SnO)纳米管阵列上的薄而均匀的 BIVO 颗粒组成的光阳极,这些纳米管阵列是使用具有可控长度和堆积密度的牺牲 ZnO 模板合成的。我们分别在 0.6 V 下证明了正面和背面照明下光吸收和电荷分离效率(η×η)乘积的新纪录,分别约为 57.3%和 58.5%。此外,在没有对 BIVO 进行任何额外处理或有意掺杂的情况下,这两个高效率的 η×η 都可以实现。这些结果表明,将 Sb:SnO 纳米管核与其他成功策略(如掺杂和氢处理)集成可以提高 BIVO 和相关半导体的性能,使其更接近其理论潜力。