Pan Qin, Li Aoshuang, Zhang Yuanlu, Yang Yaping, Cheng Chuanwei
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology School of Physics Science and Engineering Tongji University Shanghai 200092 P. R. China.
Institute of Dongguan-Tongji University Dongguan Guangdong 523808 P. R. China.
Adv Sci (Weinh). 2019 Dec 9;7(3):1902235. doi: 10.1002/advs.201902235. eCollection 2020 Feb.
BiVO as a promising semiconductor absorber is widely investigated as photoanode in photoelectrochemical water splitting. Herein, the rational design of 3D hierarchical ternary SnO/TiO/BiVO arrays is reported as photoanode for photoelectrochemical application, in which the SnO hierarchically hollow microspheres core/nanosheets shell arrays act as conductive skeletons, while the sandwiched TiO and surface BiVO are working as hole blocking layer and light absorber, respectively. Arising to the hierarchically ordered structure and synergistic effect between each component in the composite, the ternary SnO/TiO/BiVO photoanode enables high light harvesting efficiency as well as enhanced charge transport and separation efficiency, yielding a maximum photocurrent density of ≈5.03 mA cm for sulfite oxidation and ≈3.1 mA cm for water oxidation, respectively, measured at 1.23 V versus reversible hydrogen electrode under simulated air mass (AM) 1.5 solar light illumination. The results reveal that electrode design and interface engineering play important roles on the overall PEC performance.
BiVO作为一种很有前景的半导体吸收剂,作为光阳极在光电化学水分解中受到广泛研究。在此,报道了三维分级三元SnO/TiO/BiVO阵列作为光电化学应用光阳极的合理设计,其中SnO分级中空微球核/纳米片壳阵列作为导电骨架,而夹在中间的TiO和表面的BiVO分别作为空穴阻挡层和光吸收剂。由于复合材料中各组分之间的分级有序结构和协同效应,三元SnO/TiO/BiVO光阳极具有高光捕获效率以及增强的电荷传输和分离效率,在模拟空气质量(AM)1.5太阳光照射下,相对于可逆氢电极在1.23 V时,亚硫酸盐氧化的最大光电流密度约为5.03 mA cm,水氧化的最大光电流密度约为3.1 mA cm。结果表明,电极设计和界面工程对整体光电化学性能起着重要作用。